27 research outputs found

    Fast Algorithm for Partial Covers in Words

    Get PDF
    A factor uu of a word ww is a cover of ww if every position in ww lies within some occurrence of uu in ww. A word ww covered by uu thus generalizes the idea of a repetition, that is, a word composed of exact concatenations of uu. In this article we introduce a new notion of α\alpha-partial cover, which can be viewed as a relaxed variant of cover, that is, a factor covering at least α\alpha positions in ww. We develop a data structure of O(n)O(n) size (where n=wn=|w|) that can be constructed in O(nlogn)O(n\log n) time which we apply to compute all shortest α\alpha-partial covers for a given α\alpha. We also employ it for an O(nlogn)O(n\log n)-time algorithm computing a shortest α\alpha-partial cover for each α=1,2,,n\alpha=1,2,\ldots,n

    On Quasiperiodic Morphisms

    Full text link
    Weakly and strongly quasiperiodic morphisms are tools introduced to study quasiperiodic words. Formally they map respectively at least one or any non-quasiperiodic word to a quasiperiodic word. Considering them both on finite and infinite words, we get four families of morphisms between which we study relations. We provide algorithms to decide whether a morphism is strongly quasiperiodic on finite words or on infinite words.Comment: 12 page

    Efficient Seeds Computation Revisited

    Get PDF
    The notion of the cover is a generalization of a period of a string, and there are linear time algorithms for finding the shortest cover. The seed is a more complicated generalization of periodicity, it is a cover of a superstring of a given string, and the shortest seed problem is of much higher algorithmic difficulty. The problem is not well understood, no linear time algorithm is known. In the paper we give linear time algorithms for some of its versions --- computing shortest left-seed array, longest left-seed array and checking for seeds of a given length. The algorithm for the last problem is used to compute the seed array of a string (i.e., the shortest seeds for all the prefixes of the string) in O(n2)O(n^2) time. We describe also a simpler alternative algorithm computing efficiently the shortest seeds. As a by-product we obtain an O(nlog(n/m))O(n\log{(n/m)}) time algorithm checking if the shortest seed has length at least mm and finding the corresponding seed. We also correct some important details missing in the previously known shortest-seed algorithm (Iliopoulos et al., 1996).Comment: 14 pages, accepted to CPM 201

    Of Periods, Quasiperiods, Repetitions and Covers

    Get PDF

    String Covering: A Survey

    Full text link
    The study of strings is an important combinatorial field that precedes the digital computer. Strings can be very long, trillions of letters, so it is important to find compact representations. Here we first survey various forms of one potential compaction methodology, the cover of a given string x, initially proposed in a simple form in 1990, but increasingly of interest as more sophisticated variants have been discovered. We then consider covering by a seed; that is, a cover of a superstring of x. We conclude with many proposals for research directions that could make significant contributions to string processing in future
    corecore