517 research outputs found

    Optimal subgraph structures in scale-free configuration models

    Full text link
    Subgraphs reveal information about the geometry and functionalities of complex networks. For scale-free networks with unbounded degree fluctuations, we obtain the asymptotics of the number of times a small connected graph occurs as a subgraph or as an induced subgraph. We obtain these results by analyzing the configuration model with degree exponent τ∈(2,3)\tau\in(2,3) and introducing a novel class of optimization problems. For any given subgraph, the unique optimizer describes the degrees of the vertices that together span the subgraph. We find that subgraphs typically occur between vertices with specific degree ranges. In this way, we can count and characterize {\it all} subgraphs. We refrain from double counting in the case of multi-edges, essentially counting the subgraphs in the {\it erased} configuration model.Comment: 50 pages, 2 figure

    Identifying networks with common organizational principles

    Full text link
    Many complex systems can be represented as networks, and the problem of network comparison is becoming increasingly relevant. There are many techniques for network comparison, from simply comparing network summary statistics to sophisticated but computationally costly alignment-based approaches. Yet it remains challenging to accurately cluster networks that are of a different size and density, but hypothesized to be structurally similar. In this paper, we address this problem by introducing a new network comparison methodology that is aimed at identifying common organizational principles in networks. The methodology is simple, intuitive and applicable in a wide variety of settings ranging from the functional classification of proteins to tracking the evolution of a world trade network.Comment: 26 pages, 7 figure

    Detecting planted structures in random graphs

    Get PDF
    • …
    corecore