1,783 research outputs found

    E-Generalization Using Grammars

    Full text link
    We extend the notion of anti-unification to cover equational theories and present a method based on regular tree grammars to compute a finite representation of E-generalization sets. We present a framework to combine Inductive Logic Programming and E-generalization that includes an extension of Plotkin's lgg theorem to the equational case. We demonstrate the potential power of E-generalization by three example applications: computation of suggestions for auxiliary lemmas in equational inductive proofs, computation of construction laws for given term sequences, and learning of screen editor command sequences.Comment: 49 pages, 16 figures, author address given in header is meanwhile outdated, full version of an article in the "Artificial Intelligence Journal", appeared as technical report in 2003. An open-source C implementation and some examples are found at the Ancillary file

    Efficient Learning and Evaluation of Complex Concepts in Inductive Logic Programming

    No full text
    Inductive Logic Programming (ILP) is a subfield of Machine Learning with foundations in logic programming. In ILP, logic programming, a subset of first-order logic, is used as a uniform representation language for the problem specification and induced theories. ILP has been successfully applied to many real-world problems, especially in the biological domain (e.g. drug design, protein structure prediction), where relational information is of particular importance. The expressiveness of logic programs grants flexibility in specifying the learning task and understandability to the induced theories. However, this flexibility comes at a high computational cost, constraining the applicability of ILP systems. Constructing and evaluating complex concepts remain two of the main issues that prevent ILP systems from tackling many learning problems. These learning problems are interesting both from a research perspective, as they raise the standards for ILP systems, and from an application perspective, where these target concepts naturally occur in many real-world applications. Such complex concepts cannot be constructed or evaluated by parallelizing existing top-down ILP systems or improving the underlying Prolog engine. Novel search strategies and cover algorithms are needed. The main focus of this thesis is on how to efficiently construct and evaluate complex hypotheses in an ILP setting. In order to construct such hypotheses we investigate two approaches. The first, the Top Directed Hypothesis Derivation framework, implemented in the ILP system TopLog, involves the use of a top theory to constrain the hypothesis space. In the second approach we revisit the bottom-up search strategy of Golem, lifting its restriction on determinate clauses which had rendered Golem inapplicable to many key areas. These developments led to the bottom-up ILP system ProGolem. A challenge that arises with a bottom-up approach is the coverage computation of long, non-determinate, clauses. Prolog’s SLD-resolution is no longer adequate. We developed a new, Prolog-based, theta-subsumption engine which is significantly more efficient than SLD-resolution in computing the coverage of such complex clauses. We provide evidence that ProGolem achieves the goal of learning complex concepts by presenting a protein-hexose binding prediction application. The theory ProGolem induced has a statistically significant better predictive accuracy than that of other learners. More importantly, the biological insights ProGolem’s theory provided were judged by domain experts to be relevant and, in some cases, novel

    CHR Grammars

    Full text link
    A grammar formalism based upon CHR is proposed analogously to the way Definite Clause Grammars are defined and implemented on top of Prolog. These grammars execute as robust bottom-up parsers with an inherent treatment of ambiguity and a high flexibility to model various linguistic phenomena. The formalism extends previous logic programming based grammars with a form of context-sensitive rules and the possibility to include extra-grammatical hypotheses in both head and body of grammar rules. Among the applications are straightforward implementations of Assumption Grammars and abduction under integrity constraints for language analysis. CHR grammars appear as a powerful tool for specification and implementation of language processors and may be proposed as a new standard for bottom-up grammars in logic programming. To appear in Theory and Practice of Logic Programming (TPLP), 2005Comment: 36 pp. To appear in TPLP, 200

    A workbench to develop ILP systems

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201
    • …
    corecore