24,434 research outputs found

    An Approximate Maximum Common Subgraph Algorithm for Large Digital Circuits

    Get PDF
    This paper presents an approximate Maximum Common Subgraph (MCS) algorithm, specifically for directed, cyclic graphs representing digital circuits. \ud Because of the application domain, the graphs have nice properties: they are very sparse; have many different labels; and most vertices have only one predecessor. The algorithm iterates over all vertices once and uses heuristics to find the MCS. It is linear in computational complexity with respect to the size of the graph. Experiments show that very large common subgraphs were found in graphs of up to 200,000 vertices within a few minutes, when a quarter or less of the graphs differ. The variation in run-time and quality of the result is low

    Entity Ranking on Graphs: Studies on Expert Finding

    Get PDF
    Todays web search engines try to offer services for finding various information in addition to simple web pages, like showing locations or answering simple fact queries. Understanding the association of named entities and documents is one of the key steps towards such semantic search tasks. This paper addresses the ranking of entities and models it in a graph-based relevance propagation framework. In particular we study the problem of expert finding as an example of an entity ranking task. Entity containment graphs are introduced that represent the relationship between text fragments on the one hand and their contained entities on the other hand. The paper shows how these graphs can be used to propagate relevance information from the pre-ranked text fragments to their entities. We use this propagation framework to model existing approaches to expert finding based on the entity's indegree and extend them by recursive relevance propagation based on a probabilistic random walk over the entity containment graphs. Experiments on the TREC expert search task compare the retrieval performance of the different graph and propagation models

    Morphing of Triangular Meshes in Shape Space

    Get PDF
    We present a novel approach to morph between two isometric poses of the same non-rigid object given as triangular meshes. We model the morphs as linear interpolations in a suitable shape space S\mathcal{S}. For triangulated 3D polygons, we prove that interpolating linearly in this shape space corresponds to the most isometric morph in R3\mathbb{R}^3. We then extend this shape space to arbitrary triangulations in 3D using a heuristic approach and show the practical use of the approach using experiments. Furthermore, we discuss a modified shape space that is useful for isometric skeleton morphing. All of the newly presented approaches solve the morphing problem without the need to solve a minimization problem.Comment: Improved experimental result

    Learning Reputation in an Authorship Network

    Full text link
    The problem of searching for experts in a given academic field is hugely important in both industry and academia. We study exactly this issue with respect to a database of authors and their publications. The idea is to use Latent Semantic Indexing (LSI) and Latent Dirichlet Allocation (LDA) to perform topic modelling in order to find authors who have worked in a query field. We then construct a coauthorship graph and motivate the use of influence maximisation and a variety of graph centrality measures to obtain a ranked list of experts. The ranked lists are further improved using a Markov Chain-based rank aggregation approach. The complete method is readily scalable to large datasets. To demonstrate the efficacy of the approach we report on an extensive set of computational simulations using the Arnetminer dataset. An improvement in mean average precision is demonstrated over the baseline case of simply using the order of authors found by the topic models

    Optimal Time-dependent Sequenced Route Queries in Road Networks

    Full text link
    In this paper we present an algorithm for optimal processing of time-dependent sequenced route queries in road networks, i.e., given a road network where the travel time over an edge is time-dependent and a given ordered list of categories of interest, we find the fastest route between an origin and destination that passes through a sequence of points of interest belonging to each of the specified categories of interest. For instance, considering a city road network at a given departure time, one can find the fastest route between one's work and his/her home, passing through a bank, a supermarket and a restaurant, in this order. The main contribution of our work is the consideration of the time dependency of the network, a realistic characteristic of urban road networks, which has not been considered previously when addressing the optimal sequenced route query. Our approach uses the A* search paradigm that is equipped with an admissible heuristic function, thus guaranteed to yield the optimal solution, along with a pruning scheme for further reducing the search space. In order to compare our proposal we extended a previously proposed solution aimed at non-time dependent sequenced route queries, enabling it to deal with the time-dependency. Our experiments using real and synthetic data sets have shown our proposed solution to be up to two orders of magnitude faster than the temporally extended previous solution.Comment: 10 pages, 12 figures To be published as a short paper in the 23rd ACM SIGSPATIA
    • 

    corecore