3,949 research outputs found

    The longest path problem is polynomial on interval graphs.

    Get PDF
    The longest path problem is the problem of finding a path of maximum length in a graph. Polynomial solutions for this problem are known only for small classes of graphs, while it is NP-hard on general graphs, as it is a generalization of the Hamiltonian path problem. Motivated by the work of Uehara and Uno in [20], where they left the longest path problem open for the class of interval graphs, in this paper we show that the problem can be solved in polynomial time on interval graphs. The proposed algorithm runs in O(n 4) time, where n is the number of vertices of the input graph, and bases on a dynamic programming approach

    Linear-time algorithms for scattering number and Hamilton-connectivity of interval graphs.

    Get PDF
    We prove that for all inline image an interval graph is inline image-Hamilton-connected if and only if its scattering number is at most k. This complements a previously known fact that an interval graph has a nonnegative scattering number if and only if it contains a Hamilton cycle, as well as a characterization of interval graphs with positive scattering numbers in terms of the minimum size of a path cover. We also give an inline image time algorithm for computing the scattering number of an interval graph with n vertices and m edges, which improves the previously best-known inline image time bound for solving this problem. As a consequence of our two results, the maximum k for which an interval graph is k-Hamilton-connected can be computed in inline image time

    Graphic requirements for multistationarity

    Full text link
    We discuss properties which must be satisfied by a genetic network in order for it to allow differentiation. These conditions are expressed as follows in mathematical terms. Let FF be a differentiable mapping from a finite dimensional real vector space to itself. The signs of the entries of the Jacobian matrix of FF at a given point aa define an interaction graph, i.e. a finite oriented finite graph G(a)G(a) where each edge is equipped with a sign. Ren\'e Thomas conjectured twenty years ago that, if FF has at least two non degenerate zeroes, there exists aa such that G(a)G(a) contains a positive circuit. Different authors proved this in special cases, and we give here a general proof of the conjecture. In particular, we get this way a necessary condition for genetic networks to lead to multistationarity, and therefore to differentiation. We use for our proof the mathematical literature on global univalence, and we show how to derive from it several variants of Thomas' rule, some of which had been anticipated by Kaufman and Thomas

    Adiabatic evolution on a spatial-photonic Ising machine

    Get PDF
    Combinatorial optimization problems are crucial for widespread applications but remain difficult to solve on a large scale with conventional hardware. Novel optical platforms, known as coherent or photonic Ising machines, are attracting considerable attention as accelerators on optimization tasks formulable as Ising models. Annealing is a well-known technique based on adiabatic evolution for finding optimal solutions in classical and quantum systems made by atoms, electrons, or photons. Although various Ising machines employ annealing in some form, adiabatic computing on optical settings has been only partially investigated. Here, we realize the adiabatic evolution of frustrated Ising models with 100 spins programmed by spatial light modulation. We use holographic and optical control to change the spin couplings adiabatically, and exploit experimental noise to explore the energy landscape. Annealing enhances the convergence to the Ising ground state and allows to find the problem solution with probability close to unity. Our results demonstrate a photonic scheme for combinatorial optimization in analogy with adiabatic quantum algorithms and enforced by optical vector-matrix multiplications and scalable photonic technology.Comment: 9 pages, 4 figure
    • …
    corecore