3,325 research outputs found

    Finding Good Partners in Availability-aware P2P Networks

    Get PDF
    In this paper, we study the problem of finding peers matching a given availability pattern in a peer-to-peer (P2P) system. We first prove the existence of such patterns in a new trace of the eDonkey network, containing the sessions of 14M peers over 27 days. We also show that, using only 7 days of history, a simple predictor can select predictable peers and successfully predict their online periods for the next week. Then, motivated by practical examples, we specify two formal problems of availability matching that arise in real applications: disconnection matching, where peers look for partners expected to disconnect at the same time, and presence matching, where peers look for partners expected to be online simultaneously in the future. As a scalable and inexpensive solution, we propose to use epidemic protocols for topology management, such as T-Man; we provide corresponding metrics for both matching problems. Finally, we evaluated this solution by simulating two P2P applications over our real trace: task scheduling and file storage. Simulations showed that our simple solution provided good partners fast enough to match the needs of both applications, and that consequently, these applications performed as efficiently at a much lower cost. We believe that this work will be useful for many P2P applications for which it has been shown that choosing good partners, based on their availability, drastically improves their efficiency

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Video-on-Demand over Internet: a survey of existing systems and solutions

    Get PDF
    Video-on-Demand is a service where movies are delivered to distributed users with low delay and free interactivity. The traditional client/server architecture experiences scalability issues to provide video streaming services, so there have been many proposals of systems, mostly based on a peer-to-peer or on a hybrid server/peer-to-peer solution, to solve this issue. This work presents a survey of the currently existing or proposed systems and solutions, based upon a subset of representative systems, and defines selection criteria allowing to classify these systems. These criteria are based on common questions such as, for example, is it video-on-demand or live streaming, is the architecture based on content delivery network, peer-to-peer or both, is the delivery overlay tree-based or mesh-based, is the system push-based or pull-based, single-stream or multi-streams, does it use data coding, and how do the clients choose their peers. Representative systems are briefly described to give a summarized overview of the proposed solutions, and four ones are analyzed in details. Finally, it is attempted to evaluate the most promising solutions for future experiments. Résumé La vidéo à la demande est un service où des films sont fournis à distance aux utilisateurs avec u

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    SIMDAT

    No full text

    Live Streaming in P2P and Hybrid P2P-Cloud Environments for the Open Internet

    Get PDF
    Peer-to-Peer (P2P) live media streaming is an emerging technology that reduces the barrier to stream live events over the Internet. However, providing a high quality media stream using P2P overlay networks is challenging and gives raise to a number of issues: (i) how to guarantee quality of the service (QoS) in the presence of dynamism, (ii) how to incentivize nodes to participate in media distribution, (iii) how to avoid bottlenecks in the overlay, and (iv) how to deal with nodes that reside behind Network Address Translators gateways (NATs). In this thesis, we answer the above research questions in form of new algorithms and systems. First of all, we address problems (i) and (ii) by presenting our P2P live media streaming solutions: Sepidar, which is a multiple-tree overlay, and GLive, which is a mesh overlay. In both models, nodes with higher upload bandwidth are positioned closer to the media source. This structure reduces the playback latency and increases the playback continuity at nodes, and also incentivizes the nodes to provide more upload bandwidth. We use a reputation model to improve participating nodes in media distribution in Sepidar and GLive. In both systems, nodes audit the behaviour of their directly connected nodes by getting feedback from other nodes. Nodes who upload more of the stream get a relatively higher reputation, and proportionally higher quality streams. To construct our streaming overlay, we present a distributed market model inspired by Bertsekas auction algorithm, although our model does not rely on a central server with global knowledge. In our model, each node has only partial information about the system. Nodes acquire knowledge of the system by sampling nodes using the Gradient overlay, where it facilitates the discovery of nodes with similar upload bandwidth. We address the bottlenecks problem, problem (iii), by presenting CLive that satisfies real-time constraints on delay between the generation of the stream and its actual delivery to users. We resolve this problem by borrowing some resources (helpers) from the cloud, upon need. In our approach, helpers are added on demand to the overlay, to increase the amount of total available bandwidth, thus increasing the probability of receiving the video on time. As the use of cloud resources costs money, we model the problem as the minimization of the economical cost, provided that a set of constraints on QoS is satisfied. Finally, we solve the NAT problem, problem (iv), by presenting two NAT-aware peer sampling services (PSS): Gozar and Croupier. Traditional gossip-based PSS breaks down, where a high percentage of nodes are behind NATs. We overcome this problem in Gozar using one-hop relaying to communicate with the nodes behind NATs. Croupier similarly implements a gossip-based PSS, but without the use of relaying
    corecore