27,624 research outputs found

    ObliviSync: Practical Oblivious File Backup and Synchronization

    Get PDF
    Oblivious RAM (ORAM) protocols are powerful techniques that hide a client's data as well as access patterns from untrusted service providers. We present an oblivious cloud storage system, ObliviSync, that specifically targets one of the most widely-used personal cloud storage paradigms: synchronization and backup services, popular examples of which are Dropbox, iCloud Drive, and Google Drive. This setting provides a unique opportunity because the above privacy properties can be achieved with a simpler form of ORAM called write-only ORAM, which allows for dramatically increased efficiency compared to related work. Our solution is asymptotically optimal and practically efficient, with a small constant overhead of approximately 4x compared with non-private file storage, depending only on the total data size and parameters chosen according to the usage rate, and not on the number or size of individual files. Our construction also offers protection against timing-channel attacks, which has not been previously considered in ORAM protocols. We built and evaluated a full implementation of ObliviSync that supports multiple simultaneous read-only clients and a single concurrent read/write client whose edits automatically and seamlessly propagate to the readers. We show that our system functions under high work loads, with realistic file size distributions, and with small additional latency (as compared to a baseline encrypted file system) when paired with Dropbox as the synchronization service.Comment: 15 pages. Accepted to NDSS 201

    From Pine Cones to Read Clouds: Rescaffolding the Megagenome of Sugar Pine (Pinus lambertiana).

    Get PDF
    We investigate the utility and scalability of new read cloud technologies to improve the draft genome assemblies of the colossal, and largely repetitive, genomes of conifers. Synthetic long read technologies have existed in various forms as a means of reducing complexity and resolving repeats since the outset of genome assembly. Recently, technologies that combine subhaploid pools of high molecular weight DNA with barcoding on a massive scale have brought new efficiencies to sample preparation and data generation. When combined with inexpensive light shotgun sequencing, the resulting data can be used to scaffold large genomes. The protocol is efficient enough to consider routinely for even the largest genomes. Conifers represent the largest reference genome projects executed to date. The largest of these is that of the conifer Pinus lambertiana (sugar pine), with a genome size of 31 billion bp. In this paper, we report on the molecular and computational protocols for scaffolding the P. lambertiana genome using the library technology from 10× Genomics. At 247,000 bp, the NG50 of the existing reference sequence is the highest scaffold contiguity among the currently published conifer assemblies; this new assembly's NG50 is 1.94 million bp, an eightfold increase

    The Carina Flare: What can fragments in the wall tell us?

    Get PDF
    13^{13}CO(J=2--1) and C18^{18}O(J=2--1) observations of the molecular cloud G285.90+4.53 (Cloud~16) in the Carina Flare supershell (GSH287+04-17) with the APEX telescope are presented. With an algorithm DENDROFIND we identify 51 fragments and compute their sizes and masses. We discuss their mass spectrum and interpret it as being the result of the shell fragmentation process described by the pressure assisted gravitational instability - PAGI. We conclude that the explanation of the clump mass function needs a combination of gravity with pressure external to the shell.Comment: 19 pages, 14 figures, accepted by A&
    corecore