263,932 research outputs found

    Finding Even Cycles Faster via Capped k-Walks

    Full text link
    In this paper, we consider the problem of finding a cycle of length 2k2k (a C2kC_{2k}) in an undirected graph GG with nn nodes and mm edges for constant k2k\ge2. A classic result by Bondy and Simonovits [J.Comb.Th.'74] implies that if m100kn1+1/km \ge100k n^{1+1/k}, then GG contains a C2kC_{2k}, further implying that one needs to consider only graphs with m=O(n1+1/k)m = O(n^{1+1/k}). Previously the best known algorithms were an O(n2)O(n^2) algorithm due to Yuster and Zwick [J.Disc.Math'97] as well as a O(m2(1+k/21)/(k+1))O(m^{2-(1+\lceil k/2\rceil^{-1})/(k+1)}) algorithm by Alon et al. [Algorithmica'97]. We present an algorithm that uses O(m2k/(k+1))O(m^{2k/(k+1)}) time and finds a C2kC_{2k} if one exists. This bound is O(n2)O(n^2) exactly when m=Θ(n1+1/k)m=\Theta(n^{1+1/k}). For 44-cycles our new bound coincides with Alon et al., while for every k>2k>2 our bound yields a polynomial improvement in mm. Yuster and Zwick noted that it is "plausible to conjecture that O(n2)O(n^2) is the best possible bound in terms of nn". We show "conditional optimality": if this hypothesis holds then our O(m2k/(k+1))O(m^{2k/(k+1)}) algorithm is tight as well. Furthermore, a folklore reduction implies that no combinatorial algorithm can determine if a graph contains a 66-cycle in time O(m3/2ϵ)O(m^{3/2-\epsilon}) for any ϵ>0\epsilon>0 under the widely believed combinatorial BMM conjecture. Coupled with our main result, this gives tight bounds for finding 66-cycles combinatorially and also separates the complexity of finding 44- and 66-cycles giving evidence that the exponent of mm in the running time should indeed increase with kk. The key ingredient in our algorithm is a new notion of capped kk-walks, which are walks of length kk that visit only nodes according to a fixed ordering. Our main technical contribution is an involved analysis proving several properties of such walks which may be of independent interest.Comment: To appear at STOC'1

    Finding kk Simple Shortest Paths and Cycles

    Get PDF
    The problem of finding multiple simple shortest paths in a weighted directed graph G=(V,E)G=(V,E) has many applications, and is considerably more difficult than the corresponding problem when cycles are allowed in the paths. Even for a single source-sink pair, it is known that two simple shortest paths cannot be found in time polynomially smaller than n3n^3 (where n=Vn=|V|) unless the All-Pairs Shortest Paths problem can be solved in a similar time bound. The latter is a well-known open problem in algorithm design. We consider the all-pairs version of the problem, and we give a new algorithm to find kk simple shortest paths for all pairs of vertices. For k=2k=2, our algorithm runs in O(mn+n2logn)O(mn + n^2 \log n) time (where m=Em=|E|), which is almost the same bound as for the single pair case, and for k=3k=3 we improve earlier bounds. Our approach is based on forming suitable path extensions to find simple shortest paths; this method is different from the `detour finding' technique used in most of the prior work on simple shortest paths, replacement paths, and distance sensitivity oracles. Enumerating simple cycles is a well-studied classical problem. We present new algorithms for generating simple cycles and simple paths in GG in non-decreasing order of their weights; the algorithm for generating simple paths is much faster, and uses another variant of path extensions. We also give hardness results for sparse graphs, relative to the complexity of computing a minimum weight cycle in a graph, for several variants of problems related to finding kk simple paths and cycles.Comment: The current version includes new results for undirected graphs. In Section 4, the notion of an (m,n) reduction is generalized to an f(m,n) reductio

    Algorithms and Lower Bounds for Cycles and Walks: Small Space and Sparse Graphs

    Get PDF

    On the properties of cycles of simple Boolean networks

    Full text link
    We study two types of simple Boolean networks, namely two loops with a cross-link and one loop with an additional internal link. Such networks occur as relevant components of critical K=2 Kauffman networks. We determine mostly analytically the numbers and lengths of cycles of these networks and find many of the features that have been observed in Kauffman networks. In particular, the mean number and length of cycles can diverge faster than any power law.Comment: 10 pages, 8 figure

    Fast Computation of Small Cuts via Cycle Space Sampling

    Full text link
    We describe a new sampling-based method to determine cuts in an undirected graph. For a graph (V, E), its cycle space is the family of all subsets of E that have even degree at each vertex. We prove that with high probability, sampling the cycle space identifies the cuts of a graph. This leads to simple new linear-time sequential algorithms for finding all cut edges and cut pairs (a set of 2 edges that form a cut) of a graph. In the model of distributed computing in a graph G=(V, E) with O(log V)-bit messages, our approach yields faster algorithms for several problems. The diameter of G is denoted by Diam, and the maximum degree by Delta. We obtain simple O(Diam)-time distributed algorithms to find all cut edges, 2-edge-connected components, and cut pairs, matching or improving upon previous time bounds. Under natural conditions these new algorithms are universally optimal --- i.e. a Omega(Diam)-time lower bound holds on every graph. We obtain a O(Diam+Delta/log V)-time distributed algorithm for finding cut vertices; this is faster than the best previous algorithm when Delta, Diam = O(sqrt(V)). A simple extension of our work yields the first distributed algorithm with sub-linear time for 3-edge-connected components. The basic distributed algorithms are Monte Carlo, but they can be made Las Vegas without increasing the asymptotic complexity. In the model of parallel computing on the EREW PRAM our approach yields a simple algorithm with optimal time complexity O(log V) for finding cut pairs and 3-edge-connected components.Comment: Previous version appeared in Proc. 35th ICALP, pages 145--160, 200
    corecore