8,948 research outputs found

    Solving Hamiltonian Cycle by an EPT Algorithm for a Non-sparse Parameter

    Full text link
    Many hard graph problems, such as Hamiltonian Cycle, become FPT when parameterized by treewidth, a parameter that is bounded only on sparse graphs. When parameterized by the more general parameter clique-width, Hamiltonian Cycle becomes W[1]-hard, as shown by Fomin et al. [5]. S{\ae}ther and Telle address this problem in their paper [13] by introducing a new parameter, split-matching-width, which lies between treewidth and clique-width in terms of generality. They show that even though graphs of restricted split-matching-width might be dense, solving problems such as Hamiltonian Cycle can be done in FPT time. Recently, it was shown that Hamiltonian Cycle parameterized by treewidth is in EPT [1, 6], meaning it can be solved in nO(1)2O(k)n^{O(1)} 2^{O(k)}-time. In this paper, using tools from [6], we show that also parameterized by split-matching-width Hamiltonian Cycle is EPT. To the best of our knowledge, this is the first EPT algorithm for any "globally constrained" graph problem parameterized by a non-trivial and non-sparse structural parameter. To accomplish this, we also give an algorithm constructing a branch decomposition approximating the minimum split-matching-width to within a constant factor. Combined, these results show that the algorithms in [13] for Edge Dominating Set, Chromatic Number and Max Cut all can be improved. We also show that for Hamiltonian Cycle and Max Cut the resulting algorithms are asymptotically optimal under the Exponential Time Hypothesis

    An approximation algorithm for the longest cycle problem in solid grid graphs

    Full text link
    Although, the Hamiltonicity of solid grid graphs are polynomial-time decidable, the complexity of the longest cycle problem in these graphs is still open. In this paper, by presenting a linear-time constant-factor approximation algorithm, we show that the longest cycle problem in solid grid graphs is in APX. More precisely, our algorithm finds a cycle of length at least 2n3+1\frac{2n}{3}+1 in 2-connected nn-node solid grid graphs. Keywords: Longest cycle, Hamiltonian cycle, Approximation algorithm, Solid grid graph.Comment: 11 pages, 6 figure

    When the Cut Condition is Enough: A Complete Characterization for Multiflow Problems in Series-Parallel Networks

    Full text link
    Let G=(V,E)G=(V,E) be a supply graph and H=(V,F)H=(V,F) a demand graph defined on the same set of vertices. An assignment of capacities to the edges of GG and demands to the edges of HH is said to satisfy the \emph{cut condition} if for any cut in the graph, the total demand crossing the cut is no more than the total capacity crossing it. The pair (G,H)(G,H) is called \emph{cut-sufficient} if for any assignment of capacities and demands that satisfy the cut condition, there is a multiflow routing the demands defined on HH within the network with capacities defined on GG. We prove a previous conjecture, which states that when the supply graph GG is series-parallel, the pair (G,H)(G,H) is cut-sufficient if and only if (G,H)(G,H) does not contain an \emph{odd spindle} as a minor; that is, if it is impossible to contract edges of GG and delete edges of GG and HH so that GG becomes the complete bipartite graph K2,pK_{2,p}, with p3p\geq 3 odd, and HH is composed of a cycle connecting the pp vertices of degree 2, and an edge connecting the two vertices of degree pp. We further prove that if the instance is \emph{Eulerian} --- that is, the demands and capacities are integers and the total of demands and capacities incident to each vertex is even --- then the multiflow problem has an integral solution. We provide a polynomial-time algorithm to find an integral solution in this case. In order to prove these results, we formulate properties of tight cuts (cuts for which the cut condition inequality is tight) in cut-sufficient pairs. We believe these properties might be useful in extending our results to planar graphs.Comment: An extended abstract of this paper will be published at the 44th Symposium on Theory of Computing (STOC 2012

    Inserting an Edge into a Geometric Embedding

    Full text link
    The algorithm of Gutwenger et al. to insert an edge ee in linear time into a planar graph GG with a minimal number of crossings on ee, is a helpful tool for designing heuristics that minimize edge crossings in drawings of general graphs. Unfortunately, some graphs do not have a geometric embedding Γ\Gamma such that Γ+e\Gamma+e has the same number of crossings as the embedding G+eG+e. This motivates the study of the computational complexity of the following problem: Given a combinatorially embedded graph GG, compute a geometric embedding Γ\Gamma that has the same combinatorial embedding as GG and that minimizes the crossings of Γ+e\Gamma+e. We give polynomial-time algorithms for special cases and prove that the general problem is fixed-parameter tractable in the number of crossings. Moreover, we show how to approximate the number of crossings by a factor (Δ2)(\Delta-2), where Δ\Delta is the maximum vertex degree of GG.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018

    2-Vertex Connectivity in Directed Graphs

    Full text link
    We complement our study of 2-connectivity in directed graphs, by considering the computation of the following 2-vertex-connectivity relations: We say that two vertices v and w are 2-vertex-connected if there are two internally vertex-disjoint paths from v to w and two internally vertex-disjoint paths from w to v. We also say that v and w are vertex-resilient if the removal of any vertex different from v and w leaves v and w in the same strongly connected component. We show how to compute the above relations in linear time so that we can report in constant time if two vertices are 2-vertex-connected or if they are vertex-resilient. We also show how to compute in linear time a sparse certificate for these relations, i.e., a subgraph of the input graph that has O(n) edges and maintains the same 2-vertex-connectivity and vertex-resilience relations as the input graph, where n is the number of vertices.Comment: arXiv admin note: substantial text overlap with arXiv:1407.304

    Maximum Skew-Symmetric Flows and Matchings

    Full text link
    The maximum integer skew-symmetric flow problem (MSFP) generalizes both the maximum flow and maximum matching problems. It was introduced by Tutte in terms of self-conjugate flows in antisymmetrical digraphs. He showed that for these objects there are natural analogs of classical theoretical results on usual network flows, such as the flow decomposition, augmenting path, and max-flow min-cut theorems. We give unified and shorter proofs for those theoretical results. We then extend to MSFP the shortest augmenting path method of Edmonds and Karp and the blocking flow method of Dinits, obtaining algorithms with similar time bounds in general case. Moreover, in the cases of unit arc capacities and unit ``node capacities'' the blocking skew-symmetric flow algorithm has time bounds similar to those established in Even and Tarjan (1975) and Karzanov (1973) for Dinits' algorithm. In particular, this implies an algorithm for finding a maximum matching in a nonbipartite graph in O(nm)O(\sqrt{n}m) time, which matches the time bound for the algorithm of Micali and Vazirani. Finally, extending a clique compression technique of Feder and Motwani to particular skew-symmetric graphs, we speed up the implied maximum matching algorithm to run in O(nmlog(n2/m)/logn)O(\sqrt{n}m\log(n^2/m)/\log{n}) time, improving the best known bound for dense nonbipartite graphs. Also other theoretical and algorithmic results on skew-symmetric flows and their applications are presented.Comment: 35 pages, 3 figures, to appear in Mathematical Programming, minor stylistic corrections and shortenings to the original versio

    Charting the Algorithmic Complexity of Waypoint Routing

    Get PDF

    Charting the Complexity Landscape of Waypoint Routing

    Full text link
    Modern computer networks support interesting new routing models in which traffic flows from a source s to a destination t can be flexibly steered through a sequence of waypoints, such as (hardware) middleboxes or (virtualized) network functions, to create innovative network services like service chains or segment routing. While the benefits and technological challenges of providing such routing models have been articulated and studied intensively over the last years, much less is known about the underlying algorithmic traffic routing problems. This paper shows that the waypoint routing problem features a deep combinatorial structure, and we establish interesting connections to several classic graph theoretical problems. We find that the difficulty of the waypoint routing problem depends on the specific setting, and chart a comprehensive landscape of the computational complexity. In particular, we derive several NP-hardness results, but we also demonstrate that exact polynomial-time algorithms exist for a wide range of practically relevant scenarios

    Contracting Graphs to Split Graphs and Threshold Graphs

    Full text link
    We study the parameterized complexity of Split Contraction and Threshold Contraction. In these problems we are given a graph G and an integer k and asked whether G can be modified into a split graph or a threshold graph, respectively, by contracting at most k edges. We present an FPT algorithm for Split Contraction, and prove that Threshold Contraction on split graphs, i.e., contracting an input split graph to a threshold graph, is FPT when parameterized by the number of contractions. To give a complete picture, we show that these two problems admit no polynomial kernels unless NP\subseteq coNP/poly.Comment: 14 pages, 4 figure

    Claw-free t-perfect graphs can be recognised in polynomial time

    Full text link
    A graph is called t-perfect if its stable set polytope is defined by non-negativity, edge and odd-cycle inequalities. We show that it can be decided in polynomial time whether a given claw-free graph is t-perfect
    corecore