8,737 research outputs found

    Automated Certification of Authorisation Policy Resistance

    Full text link
    Attribute-based Access Control (ABAC) extends traditional Access Control by considering an access request as a set of pairs attribute name-value, making it particularly useful in the context of open and distributed systems, where security relevant information can be collected from different sources. However, ABAC enables attribute hiding attacks, allowing an attacker to gain some access by withholding information. In this paper, we first introduce the notion of policy resistance to attribute hiding attacks. We then propose the tool ATRAP (Automatic Term Rewriting for Authorisation Policies), based on the recent formal ABAC language PTaCL, which first automatically searches for resistance counter-examples using Maude, and then automatically searches for an Isabelle proof of resistance. We illustrate our approach with two simple examples of policies and propose an evaluation of ATRAP performances.Comment: 20 pages, 4 figures, version including proofs of the paper that will be presented at ESORICS 201

    Ackermannian and Primitive-Recursive Bounds with Dickson's Lemma

    Full text link
    Dickson's Lemma is a simple yet powerful tool widely used in termination proofs, especially when dealing with counters or related data structures. However, most computer scientists do not know how to derive complexity upper bounds from such termination proofs, and the existing literature is not very helpful in these matters. We propose a new analysis of the length of bad sequences over (N^k,\leq) and explain how one may derive complexity upper bounds from termination proofs. Our upper bounds improve earlier results and are essentially tight

    CTL+FO Verification as Constraint Solving

    Full text link
    Expressing program correctness often requires relating program data throughout (different branches of) an execution. Such properties can be represented using CTL+FO, a logic that allows mixing temporal and first-order quantification. Verifying that a program satisfies a CTL+FO property is a challenging problem that requires both temporal and data reasoning. Temporal quantifiers require discovery of invariants and ranking functions, while first-order quantifiers demand instantiation techniques. In this paper, we present a constraint-based method for proving CTL+FO properties automatically. Our method makes the interplay between the temporal and first-order quantification explicit in a constraint encoding that combines recursion and existential quantification. By integrating this constraint encoding with an off-the-shelf solver we obtain an automatic verifier for CTL+FO
    • …
    corecore