344 research outputs found

    Nonconvex notions of regularity and convergence of fundamental algorithms for feasibility problems

    Full text link
    We consider projection algorithms for solving (nonconvex) feasibility problems in Euclidean spaces. Of special interest are the Method of Alternating Projections (MAP) and the Douglas-Rachford or Averaged Alternating Reflection Algorithm (AAR). In the case of convex feasibility, firm nonexpansiveness of projection mappings is a global property that yields global convergence of MAP and for consistent problems AAR. Based on (\epsilon, \delta)-regularity of sets developed by Bauschke, Luke, Phan and Wang in 2012, a relaxed local version of firm nonexpansiveness with respect to the intersection is introduced for consistent feasibility problems. Together with a coercivity condition that relates to the regularity of the intersection, this yields local linear convergence of MAP for a wide class of nonconvex problems,Comment: 22 pages, no figures, 30 reference

    Local Linear Convergence of Approximate Projections onto Regularized Sets

    Full text link
    The numerical properties of algorithms for finding the intersection of sets depend to some extent on the regularity of the sets, but even more importantly on the regularity of the intersection. The alternating projection algorithm of von Neumann has been shown to converge locally at a linear rate dependent on the regularity modulus of the intersection. In many applications, however, the sets in question come from inexact measurements that are matched to idealized models. It is unlikely that any such problems in applications will enjoy metrically regular intersection, let alone set intersection. We explore a regularization strategy that generates an intersection with the desired regularity properties. The regularization, however, can lead to a significant increase in computational complexity. In a further refinement, we investigate and prove linear convergence of an approximate alternating projection algorithm. The analysis provides a regularization strategy that fits naturally with many ill-posed inverse problems, and a mathematically sound stopping criterion for extrapolated, approximate algorithms. The theory is demonstrated on the phase retrieval problem with experimental data. The conventional early termination applied in practice to unregularized, consistent problems in diffraction imaging can be justified fully in the framework of this analysis providing, for the first time, proof of convergence of alternating approximate projections for finite dimensional, consistent phase retrieval problems.Comment: 23 pages, 5 figure

    A convergent relaxation of the Douglas-Rachford algorithm

    Full text link
    This paper proposes an algorithm for solving structured optimization problems, which covers both the backward-backward and the Douglas-Rachford algorithms as special cases, and analyzes its convergence. The set of fixed points of the algorithm is characterized in several cases. Convergence criteria of the algorithm in terms of general fixed point operators are established. When applying to nonconvex feasibility including the inconsistent case, we prove local linear convergence results under mild assumptions on regularity of individual sets and of the collection of sets which need not intersect. In this special case, we refine known linear convergence criteria for the Douglas-Rachford algorithm (DR). As a consequence, for feasibility with one of the sets being affine, we establish criteria for linear and sublinear convergence of convex combinations of the alternating projection and the DR methods. These results seem to be new. We also demonstrate the seemingly improved numerical performance of this algorithm compared to the RAAR algorithm for both consistent and inconsistent sparse feasibility problems
    • …
    corecore