196,414 research outputs found

    On the Shape of Things: From holography to elastica

    Get PDF
    We explore the question of which shape a manifold is compelled to take when immersed in another one, provided it must be the extremum of some functional. We consider a family of functionals which depend quadratically on the extrinsic curvatures and on projections of the ambient curvatures. These functionals capture a number of physical setups ranging from holography to the study of membranes and elastica. We present a detailed derivation of the equations of motion, known as the shape equations, placing particular emphasis on the issue of gauge freedom in the choice of normal frame. We apply these equations to the particular case of holographic entanglement entropy for higher curvature three dimensional gravity and find new classes of entangling curves. In particular, we discuss the case of New Massive Gravity where we show that non-geodesic entangling curves have always a smaller on-shell value of the entropy functional. Then we apply this formalism to the computation of the entanglement entropy for dual logarithmic CFTs. Nevertheless, the correct value for the entanglement entropy is provided by geodesics. Then, we discuss the importance of these equations in the context of classical elastica and comment on terms that break gauge invariance.Comment: 54 pages, 8 figures. Significantly improved version, accepted for publication in Annals of Physics. New section on logarithmic CFTs. Detailed derivation of the shape equations added in appendix B. Typos corrected, clarifications adde

    Fully coupled simulations of non-colloidal monodisperse sheared suspensions

    Get PDF
    In this work we investigate numerically the dynamics of sheared suspensions in the limit of vanishingly small fluid and particle inertia. The numerical model we used is able to handle the multi-body hydrodynamic interactions between thousands of particles embedded in a linear shear flow. The presence of the particles is modeled by momentum source terms spread out on a spherical envelop forcing the Stokes equations of the creeping flow. Therefore all the velocity perturbations induced by the moving particles are simultaneously accounted for. The statistical properties of the sheared suspensions are related to the velocity fluctuation of the particles. We formed averages for the resulting velocity fluctuation and rotation rate tensors. We found that the latter are highly anisotropic and that all the velocity fluctuation terms grow linearly with particle volume fraction. Only one off-diagonal term is found to be non zero (clearly related to trajectory symmetry breaking induced by the non-hydrodynamic repulsion force). We also found a strong correlation of positive/negative velocities in the shear plane, on a time scale controlled by the shear rate (direct interaction of two particles). The time scale required to restore uncorrelated velocity fluctuations decreases continuously as the concentration increases. We calculated the shear induced self-diffusion coefficients using two different methods and the resulting diffusion tensor appears to be anisotropic too. The microstructure of the suspension is found to be drastically modified by particle interactions. First the probability density function of velocity fluctuations showed a transition from exponential to Gaussian behavior as particle concentration varies. Second the probability of finding close pairs while the particles move under shear flow is strongly enhanced by hydrodynamic interactions when the concentration increases

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    “Till the muddle in my mind have cleared awa”: can we help shape policy using systems modelling?

    Get PDF
    This paper considers how some well-documented deficiencies of mental models make it difficult to create effective policies, and suggests that systems modelling can begin to address this issue. To illustrate the argument three short cases are presented. These relate to specific domains but demonstrate how systems modelling can illuminate different general phenomena: effects on labour costs (unintended consequences and feedback); fishery management (accumulation and non-linearity) and child protection (worldviews and sense-making). Six levers for increasing the use of systems modelling in the policy arena are then discussed. The paper closes by emphasising the opportunities for systems modellers in the Anthropocene Era

    Geodesic boundary value problems with symmetry

    Full text link
    This paper shows how left and right actions of Lie groups on a manifold may be used to complement one another in a variational reformulation of optimal control problems equivalently as geodesic boundary value problems with symmetry. We prove an equivalence theorem to this effect and illustrate it with several examples. In finite-dimensions, we discuss geodesic flows on the Lie groups SO(3) and SE(3) under the left and right actions of their respective Lie algebras. In an infinite-dimensional example, we discuss optimal large-deformation matching of one closed curve to another embedded in the same plane. In the curve-matching example, the manifold \Emb(S^1, \mathbb{R}^2) comprises the space of closed curves S1S^1 embedded in the plane R2\mathbb{R}^2. The diffeomorphic left action \Diff(\mathbb{R}^2) deforms the curve by a smooth invertible time-dependent transformation of the coordinate system in which it is embedded, while leaving the parameterisation of the curve invariant. The diffeomorphic right action \Diff(S^1) corresponds to a smooth invertible reparameterisation of the S1S^1 domain coordinates of the curve. As we show, this right action unlocks an important degree of freedom for geodesically matching the curve shapes using an equivalent fixed boundary value problem, without being constrained to match corresponding points along the template and target curves at the endpoint in time.Comment: First version -- comments welcome

    Tracking Information Flow through the Environment: Simple Cases of Stigmerg

    Get PDF
    Recent work in sensor evolution aims at studying the perception-action loop in a formalized information-theoretic manner. By treating sensors as extracting information and actuators as having the capability to "imprint" information on the environment we can view agents as creating, maintaining and making use of various information flows. In our paper we study the perception-action loop of agents using Shannon information flows. We use information theory to track and reveal the important relationships between agents and their environment. For example, we provide an information-theoretic characterization of stigmergy and evolve finite-state automata as agent controllers to engage in stigmergic communication. Our analysis of the evolved automata and the information flow provides insight into how evolution organizes sensoric information acquisition, implicit internal and external memory, processing and action selection

    Principal Boundary on Riemannian Manifolds

    Full text link
    We consider the classification problem and focus on nonlinear methods for classification on manifolds. For multivariate datasets lying on an embedded nonlinear Riemannian manifold within the higher-dimensional ambient space, we aim to acquire a classification boundary for the classes with labels, using the intrinsic metric on the manifolds. Motivated by finding an optimal boundary between the two classes, we invent a novel approach -- the principal boundary. From the perspective of classification, the principal boundary is defined as an optimal curve that moves in between the principal flows traced out from two classes of data, and at any point on the boundary, it maximizes the margin between the two classes. We estimate the boundary in quality with its direction, supervised by the two principal flows. We show that the principal boundary yields the usual decision boundary found by the support vector machine in the sense that locally, the two boundaries coincide. Some optimality and convergence properties of the random principal boundary and its population counterpart are also shown. We illustrate how to find, use and interpret the principal boundary with an application in real data.Comment: 31 pages,10 figure
    corecore