33,338 research outputs found

    European exchange trading funds trading with locally weighted support vector regression

    Get PDF
    In this paper, two different Locally Weighted Support Vector Regression (wSVR) algorithms are generated and applied to the task of forecasting and trading five European Exchange Traded Funds. The trading application covers the recent European Monetary Union debt crisis. The performance of the proposed models is benchmarked against traditional Support Vector Regression (SVR) models. The Radial Basis Function, the Wavelet and the Mahalanobis kernel are explored and tested as SVR kernels. Finally, a novel statistical SVR input selection procedure is introduced based on a principal component analysis and the Hansen, Lunde, and Nason (2011) model confidence test. The results demonstrate the superiority of the wSVR models over the traditional SVRs and of the v-SVR over the ε-SVR algorithms. We note that the performance of all models varies and considerably deteriorates in the peak of the debt crisis. In terms of the kernels, our results do not confirm the belief that the Radial Basis Function is the optimum choice for financial series

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    Volatility forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly. JEL Klassifikation: C10, C53, G1

    Intraday forecasts of a volatility index: Functional time series methods with dynamic updating

    Full text link
    As a forward-looking measure of future equity market volatility, the VIX index has gained immense popularity in recent years to become a key measure of risk for market analysts and academics. We consider discrete reported intraday VIX tick values as realisations of a collection of curves observed sequentially on equally spaced and dense grids over time and utilise functional data analysis techniques to produce one-day-ahead forecasts of these curves. The proposed method facilitates the investigation of dynamic changes in the index over very short time intervals as showcased using the 15-second high-frequency VIX index values. With the help of dynamic updating techniques, our point and interval forecasts are shown to enjoy improved accuracy over conventional time series models.Comment: 29 pages, 5 figures, To appear at the Annals of Operations Researc

    Does money matter in inflation forecasting?.

    Get PDF
    This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, recurrent neural networks and kernel recursive least squares regression - techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation

    Exploring the trend of New Zealand housing prices to support sustainable development

    Get PDF
    The New Zealand housing sector is experiencing rapid growth that has a significant impact on society, the economy, and the environment. In line with the growth, the housing market for both residential and business purposes has been booming, as have house prices. To sustain the housing development, it is critical to accurately monitor and predict housing prices so as to support the decision-making process in the housing sector. This study is devoted to applying a mathematical method to predict housing prices. The forecasting performance of two types of models: autoregressive integrated moving average (ARIMA) and multiple linear regression (MLR) analysis are compared. The ARIMA and regression models are developed based on a training-validation sample method. The results show that the ARIMA model generally performs better than the regression model. However, the regression model explores, to some extent, the significant correlations between house prices in New Zealand and the macro-economic conditions
    corecore