188,703 research outputs found

    Deep Cellular Recurrent Neural Architecture for Efficient Multidimensional Time-Series Data Processing

    Get PDF
    Efficient processing of time series data is a fundamental yet challenging problem in pattern recognition. Though recent developments in machine learning and deep learning have enabled remarkable improvements in processing large scale datasets in many application domains, most are designed and regulated to handle inputs that are static in time. Many real-world data, such as in biomedical, surveillance and security, financial, manufacturing and engineering applications, are rarely static in time, and demand models able to recognize patterns in both space and time. Current machine learning (ML) and deep learning (DL) models adapted for time series processing tend to grow in complexity and size to accommodate the additional dimensionality of time. Specifically, the biologically inspired learning based models known as artificial neural networks that have shown extraordinary success in pattern recognition, tend to grow prohibitively large and cumbersome in the presence of large scale multi-dimensional time series biomedical data such as EEG. Consequently, this work aims to develop representative ML and DL models for robust and efficient large scale time series processing. First, we design a novel ML pipeline with efficient feature engineering to process a large scale multi-channel scalp EEG dataset for automated detection of epileptic seizures. With the use of a sophisticated yet computationally efficient time-frequency analysis technique known as harmonic wavelet packet transform and an efficient self-similarity computation based on fractal dimension, we achieve state-of-the-art performance for automated seizure detection in EEG data. Subsequently, we investigate the development of a novel efficient deep recurrent learning model for large scale time series processing. For this, we first study the functionality and training of a biologically inspired neural network architecture known as cellular simultaneous recurrent neural network (CSRN). We obtain a generalization of this network for multiple topological image processing tasks and investigate the learning efficacy of the complex cellular architecture using several state-of-the-art training methods. Finally, we develop a novel deep cellular recurrent neural network (CDRNN) architecture based on the biologically inspired distributed processing used in CSRN for processing time series data. The proposed DCRNN leverages the cellular recurrent architecture to promote extensive weight sharing and efficient, individualized, synchronous processing of multi-source time series data. Experiments on a large scale multi-channel scalp EEG, and a machine fault detection dataset show that the proposed DCRNN offers state-of-the-art recognition performance while using substantially fewer trainable recurrent units

    Online Non-linear Prediction of Financial Time Series Patterns

    Get PDF
    We consider a mechanistic non-linear machine learning approach to learning signals in financial time series data. A modularised and decoupled algorithm framework is established and is proven on daily sampled closing time-series data for JSE equity markets. The input patterns are based on input data vectors of data windows preprocessed into a sequence of daily, weekly and monthly or quarterly sampled feature measurement changes (log feature fluctuations). The data processing is split into a batch processed step where features are learnt using a Stacked AutoEncoder (SAE) via unsupervised learning, and then both batch and online supervised learning are carried out on Feedforward Neural Networks (FNNs) using these features. The FNN output is a point prediction of measured time-series feature fluctuations (log differenced data) in the future (ex-post). Weight initializations for these networks are implemented with restricted Boltzmann machine pretraining, and variance based initializations. The validity of the FNN backtest results are shown under a rigorous assessment of backtest overfitting using both Combinatorially Symmetrical Cross Validation and Probabilistic and Deflated Sharpe Ratios. Results are further used to develop a view on the phenomenology of financial markets and the value of complex historical data under unstable dynamics

    Artificial Intelligence for the Edge Computing Paradigm.

    Get PDF
    With modern technologies moving towards the internet of things where seemingly every financial, private, commercial and medical transaction being carried out by portable and intelligent devices; Machine Learning has found its way into every smart device and application possible. However, Machine Learning cannot be used on the edge directly due to the limited capabilities of small and battery-powered modules. Therefore, this thesis aims to provide light-weight automated Machine Learning models which are applied on a standard edge device, the Raspberry Pi, where one framework aims to limit parameter tuning while automating feature extraction and a second which can perform Machine Learning classification on the edge traditionally, and can be used additionally for image-based explainable Artificial Intelligence. Also, a commercial Artificial Intelligence software have been ported to work in a client/server setups on the Raspberry Pi board where it was incorporated in all of the Machine Learning frameworks which will be presented in this thesis. This dissertation also introduces multiple algorithms that can convert images into Time-series for classification and explainability but also introduces novel Time-series feature extraction algorithms that are applied to biomedical data while introducing the concept of the Activation Engine, which is a post-processing block that tunes Neural Networks without the need of particular experience in Machine Leaning. Also, a tree-based method for multiclass classification has been introduced which outperforms the One-to-Many approach while being less complex that the One-to-One method.\par The results presented in this thesis exhibit high accuracy when compared with the literature, while remaining efficient in terms of power consumption and the time of inference. Additionally the concepts, methods or algorithms that were introduced are particularly novel technically, where they include: • Feature extraction of professionally annotated, and poorly annotated time-series. • The introduction of the Activation Engine post-processing block. • A model for global image explainability with inference on the edge. • A tree-based algorithm for multiclass classification

    Learning Methods for Variable Selection and Time Series Prediction

    Get PDF
    In the recent years, machine learning methods have become increasingly popular for modelling many different phenomena: financial markets, spatio-temporal data sets, pattern recognition, speech and image processing, recommender systems and many others. This huge interest in machine learning comes from the great success of their application and the increasingly easier acquisition, storage and access of data. In this thesis, two general problems in machine learning are discussed and several solutions are offered. The first problem is variable selection, an approach to automatically select the most relevant features in the data. Two key phases of variable selection are the search criterion and the search algorithm. The thesis focuses on the Delta test as a search criterion, while several solutions are offered for the search algorithm, such as the Genetic Algorithm and Tabu Search. Furthermore, the selection procedure is extended for more general cases of scaling and projection, as well as their combination. Finally, some of the above proposed solutions have been developed for parallel architectures which enable the whole variable selection procedure to be used for data sets with a high number of features. The second problem tackled in the thesis is time series prediction that arises in many fields of science and industry. In simple words: time series prediction involves the estimation of future values for a series of measurements of a/the phenomenon of interest. The number of these estimations can be small, leading to short-term prediction, or several hundreds which constitute long-term prediction. Two models have been developed for this particular task. One is based on a recently popular neural network type called Extreme Learning Machine, while the other is a juxtaposition of Generative Topographic Mapping and Relevance Learning modified for regression tasks. Finally, the above problems are tackled together for real-world time series coming from a biological domain. The difficulty of making any kind of inference in biological time series is due to really small amount of available samples, irregular sampling frequency and spatial coverage of areas of interest. Nevertheless, more stable model parameter estimation is possible with the combined use of global climate indicators and regional measurements in the form of a multifactor approach.Peer reviewe

    Аналіз та прогнозування фінансових рядів, що містять неповні дані

    Get PDF
    Дипломнаа робота: 115 с., 25 рис., 16 табл., 2 додатки, 7 джерел. Дана робота присвячена дослідженню і прогнозуванню фінансових рядів, що містять неповні дані, а також впливу методів відновлення даних на результати прогнозування. Об’єкт дослідження – зміни фінансових показників акцій таких компаній як Tesla, Amazon і Microsoft за різні періоди часу. Предмет дослідження – методи заповнення пропусків в даних: інтерполяційні, статистичні, машинного навчання; а також методи та моделі прогнозування часових рядів: авторегресійні моделі та нейронні мережі. Мета дослідження – розробка програмного продукту для відновлення та прогнозування даних фінансових рядів. Результат роботи – програмний продукт реалізований мовою програмування Python. За допомогою продукту побудовано та проаналізовано методи і моделі обробки даних фінансових рядів.Bachelor’s thesis: 115 p., 25 fig., 16 tab., 2 appendices, 7 references. This work is dedicated to the investigation and forecasting of financial series containing incomplete data, as well as the impact of data recovery methods on forecasting results. The research object is the financial indicators of stocks of companies such as TESLA, Amazon, and Microsoft for different time periods. The research subject is the methods of filling data gaps: interpolation, statistical, machine learning, as well as methods and models for forecasting time series: autoregressive models and neural networks. The research aim is to develop a software product for data recovery and forecasting of financial series. The result of the work is a software product implemented in the Python programming language. The product allows for the construction and analysis of methods and models for processing financial series data
    corecore