21 research outputs found

    Combining Private Set-Intersection with Secure Two-Party Computation

    Get PDF
    Private Set-Intersection (PSI) is one of the most popular and practically relevant secure two-party computation (2PC) tasks. Therefore, designing special-purpose PSI protocols (which are more efficient than generic 2PC solutions) is a very active line of research. In particular, a recent line of work has proposed PSI protocols based on oblivious transfer (OT) which, thanks to recent advances in OT-extension techniques, is nowadays a very cheap cryptographic building block. Unfortunately, these protocols cannot be plugged into larger 2PC applications since in these protocols one party (by design) learns the output of the intersection. Therefore, it is not possible to perform secure post-processing of the output of the PSI protocol. In this paper we propose a novel and efficient OT-based PSI protocol that produces an encrypted output that can therefore be later used as an input to other 2PC protocols. In particular, the protocol can be used in combination with all common approaches to 2PC including garbled circuits, secret sharing and homomorphic encryption. Thus, our protocol can be combined with the right 2PC techniques to achieve more efficient protocols for computations of the form z=f(XY)z=f(X\cap Y) for arbitrary functions ff

    A Generic Construction of an Anonymous Reputation System and Instantiations from Lattices

    Get PDF
    With an anonymous reputation system one can realize the process of rating sellers anonymously in an online shop. While raters can stay anonymous, sellers still have the guarantee that they can be only be reviewed by raters who bought their product.We present the first generic construction of a reputation system from basic building blocks, namely digital signatures, encryption schemes, non-interactive zero-knowledge proofs, and linking indistinguishable tags. We then show the security of the reputation system in a strong security model. Among others, we instantiate the generic construction with building blocks based on lattice problems, leading to the first module lattice-based reputation system

    Practical free-space quantum key distribution

    Get PDF
    Within the last two decades, the world has seen an exponential increase in the quantity of data traffic exchanged electronically. Currently, the widespread use of classical encryption technology provides tolerable levels of security for data in day to day life. However, with one somewhat impractical exception these technologies are based on mathematical complexity and have never been proven to be secure. Significant advances in mathematics or new computer architectures could render these technologies obsolete in a very short timescale. By contrast, Quantum Key Distribution (or Quantum Cryptography as it is sometimes called) offers a theoretically secure method of cryptographic key generation and exchange which is guaranteed by physical laws. Moreover, the technique is capable of eavesdropper detection during the key exchange process. Much research and development work has been undertaken but most of this work has concentrated on the use of optical fibres as the transmission medium for the quantum channel. This thesis discusses the requirements, theoretical basis and practical development of a compact, free-space transmission quantum key distribution system from inception to system tests. Experiments conducted over several distances are outlined which verify the feasibility of quantum key distribution operating continuously over ranges from metres to intercity distances and finally to global reach via the use of satellites

    Are you The One to Share? Secret Transfer with Access Structure

    Get PDF
    Sharing information to others is common nowadays, but the question is with whom to share. To address this problem, we propose the notion of secret transfer with access structure (STAS). STAS is a two-party computation protocol that enables the server to transfer a secret to a client who satisfies the prescribed access structure. In this paper, we focus on the case of STAS for threshold access structure, i.e. threshold secret transfer (TST). We also discuss how to replace it with linear secret sharing to make the access structure more expressive. Our proposed TST scheme enables a number of applications including a simple construction of oblivious transfer with threshold access control, and (a variant of) threshold private set intersection (t-PSI), which are the first of their kinds in the literature to the best of our knowledge. Moreover, we show that TST is useful a number of applications such as privacy-preserving matchmaking with interesting features. The underlying primitive of STAS is a variant of oblivious transfer (OT) which we call OT for sparse array. We provide two constructions which are inspired from state-of-the-art PSI techniques including oblivious polynomial evaluation and garbled Bloom filter (GBF). We implemented the more efficient construction and provide its performance evaluation

    Predicate Aggregate Signatures and Applications

    Get PDF
    Motivated by applications in anonymous reputation systems and blockchain governance, we initiate the study of predicate aggregate signatures (PAS), which is a new primitive that enables users to sign multiple messages, and these individual signatures can be aggregated by a combiner, preserving the anonymity of the signers. The resulting PAS discloses only a brief description of signers for each message and provides assurance that both the signers and their description satisfy the specified public predicate. We formally define PAS and give a construction framework to yield a logarithmic size signature, and further reduce the verification time also to logarithmic. We also give several instantiations for several concrete predicates that may be of independent interest. To showcase its power, we also demonstrate its applications to multiple settings including multi-signatures, aggregate signatures, threshold sig- natures, (threshold) ring signatures, attribute-based signatures, etc, and advance the state of the art in all of them

    A Generic Construction of an Anonymous Reputation System and Instantiations from Lattices

    Get PDF
    With an anonymous reputation system one can realize the process of rating sellers anonymously in an online shop. While raters can stay anonymous, sellers still have the guarantee that they can be only be reviewed by raters who bought their product. We present the first generic construction of a reputation system from basic building blocks, namely digital signatures, encryption schemes, non-interactive zero-knowledge proofs, and linking indistinguishable tags. We then show the security of the reputation system in a strong security model. Among others, we instantiate the generic construction with building blocks based on lattice problems, leading to the first module lattice-based reputation system
    corecore