9,004 research outputs found

    Improving Hypernymy Extraction with Distributional Semantic Classes

    Full text link
    In this paper, we show how distributionally-induced semantic classes can be helpful for extracting hypernyms. We present methods for inducing sense-aware semantic classes using distributional semantics and using these induced semantic classes for filtering noisy hypernymy relations. Denoising of hypernyms is performed by labeling each semantic class with its hypernyms. On the one hand, this allows us to filter out wrong extractions using the global structure of distributionally similar senses. On the other hand, we infer missing hypernyms via label propagation to cluster terms. We conduct a large-scale crowdsourcing study showing that processing of automatically extracted hypernyms using our approach improves the quality of the hypernymy extraction in terms of both precision and recall. Furthermore, we show the utility of our method in the domain taxonomy induction task, achieving the state-of-the-art results on a SemEval'16 task on taxonomy induction.Comment: In Proceedings of the 11th Conference on Language Resources and Evaluation (LREC 2018). Miyazaki, Japa

    Evaluation of unsupervised information extraction

    Get PDF
    International audienceUnsupervised methods gain more and more attention nowadays in information extraction area, which allows to design more open extraction systems. In the domain of unsupervised information extraction, clustering methods are of particular importance. However, evaluating the results of clustering remains difficult at a large scale, especially in the absence of a reliable reference. On the basis of our experiments on unsupervised relation extraction, we first discuss in this article how to evaluate clustering quality without a reference by relying on internal measures. Then we propose a method, supported by a dedicated annotation tool, for building a set of reference clusters of relations from a corpus. Moreover, we apply it to our experimental framework and illustrate in this way how to build a significant reference for unsupervised relation extraction, more precisely made of 80 clusters gathering more than 4,000 relation instances, in a short time. Finally, we present how such reference is exploited for the evaluation of clustering with external measures and analyze the results of the application of these measures to the clusters of relations produced by our unsupervised relation extraction system

    mARC: Memory by Association and Reinforcement of Contexts

    Full text link
    This paper introduces the memory by Association and Reinforcement of Contexts (mARC). mARC is a novel data modeling technology rooted in the second quantization formulation of quantum mechanics. It is an all-purpose incremental and unsupervised data storage and retrieval system which can be applied to all types of signal or data, structured or unstructured, textual or not. mARC can be applied to a wide range of information clas-sification and retrieval problems like e-Discovery or contextual navigation. It can also for-mulated in the artificial life framework a.k.a Conway "Game Of Life" Theory. In contrast to Conway approach, the objects evolve in a massively multidimensional space. In order to start evaluating the potential of mARC we have built a mARC-based Internet search en-gine demonstrator with contextual functionality. We compare the behavior of the mARC demonstrator with Google search both in terms of performance and relevance. In the study we find that the mARC search engine demonstrator outperforms Google search by an order of magnitude in response time while providing more relevant results for some classes of queries
    corecore