323 research outputs found

    Performance Analysis of l_0 Norm Constraint Least Mean Square Algorithm

    Full text link
    As one of the recently proposed algorithms for sparse system identification, l0l_0 norm constraint Least Mean Square (l0l_0-LMS) algorithm modifies the cost function of the traditional method with a penalty of tap-weight sparsity. The performance of l0l_0-LMS is quite attractive compared with its various precursors. However, there has been no detailed study of its performance. This paper presents all-around and throughout theoretical performance analysis of l0l_0-LMS for white Gaussian input data based on some reasonable assumptions. Expressions for steady-state mean square deviation (MSD) are derived and discussed with respect to algorithm parameters and system sparsity. The parameter selection rule is established for achieving the best performance. Approximated with Taylor series, the instantaneous behavior is also derived. In addition, the relationship between l0l_0-LMS and some previous arts and the sufficient conditions for l0l_0-LMS to accelerate convergence are set up. Finally, all of the theoretical results are compared with simulations and are shown to agree well in a large range of parameter setting.Comment: 31 pages, 8 figure

    Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics

    Full text link
    Neural activity patterns related to behavior occur at many scales in time and space from the atomic and molecular to the whole brain. Here we explore the feasibility of interpreting neurophysiological data in the context of many-body physics by using tools that physicists have devised to analyze comparable hierarchies in other fields of science. We focus on a mesoscopic level that offers a multi-step pathway between the microscopic functions of neurons and the macroscopic functions of brain systems revealed by hemodynamic imaging. We use electroencephalographic (EEG) records collected from high-density electrode arrays fixed on the epidural surfaces of primary sensory and limbic areas in rabbits and cats trained to discriminate conditioned stimuli (CS) in the various modalities. High temporal resolution of EEG signals with the Hilbert transform gives evidence for diverse intermittent spatial patterns of amplitude (AM) and phase modulations (PM) of carrier waves that repeatedly re-synchronize in the beta and gamma ranges at near zero time lags over long distances. The dominant mechanism for neural interactions by axodendritic synaptic transmission should impose distance-dependent delays on the EEG oscillations owing to finite propagation velocities. It does not. EEGs instead show evidence for anomalous dispersion: the existence in neural populations of a low velocity range of information and energy transfers, and a high velocity range of the spread of phase transitions. This distinction labels the phenomenon but does not explain it. In this report we explore the analysis of these phenomena using concepts of energy dissipation, the maintenance by cortex of multiple ground states corresponding to AM patterns, and the exclusive selection by spontaneous breakdown of symmetry (SBS) of single states in sequences.Comment: 31 page

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Space in the brain

    Get PDF

    Neural dynamics of social behavior : An evolutionary and mechanistic perspective on communication, cooperation, and competition among situated agents

    Get PDF
    Social behavior can be found on almost every level of life, ranging from microorganisms to human societies. However, explaining the evolutionary emergence of cooperation, communication, or competition still challenges modern biology. The most common approaches to this problem are based on game-theoretic models. The problem is that these models often assume fixed and limited rules and actions that individual agents can choose from, which excludes the dynamical nature of the mechanisms that underlie the behavior of living systems. So far, there exists a lack of convincing modeling approaches to investigate the emergence of social behavior from a mechanistic and evolutionary perspective. Instead of studying animals, the methodology employed in this thesis combines several aspects from alternative approaches to study behavior in a rather novel way. Robotic models are considered as individual agents which are controlled by recurrent neural networks representing non-linear dynamical system. The topology and parameters of these networks are evolved following an open-ended evolution approach, that is, individuals are not evaluated on high-level goals or optimized for specific functions. Instead, agents compete for limited resources to enhance their chance of survival. Further, there is no restriction with respect to how individuals interact with their environment or with each other. As its main objective, this thesis aims at a complementary approach for studying not only the evolution, but also the mechanisms of basic forms of communication. For this purpose it can be shown that a robot does not necessarily have to be as complex as a human, not even as complex as a bacterium. The strength of this approach is that it deals with rather simple, yet complete and situated systems, facing similar real world problems as animals do, such as sensory noise or dynamically changing environments. The experimental part of this thesis is substantiated in a five-part examination. First, self-organized aggregation patterns are discussed. Second, the advantages of evolving decentralized control with respect to behavioral robustness and flexibility is demonstrated. Third, it is shown that only minimalistic local acoustic communication is required to coordinate the behavior of large groups. This is followed by investigations of the evolutionary emergence of communication. Finally, it is shown how already evolved communicative behavior changes during further evolution when a population is confronted with competition about limited environmental resources. All presented experiments entail thorough analysis of the dynamical mechanisms that underlie evolved communication systems, which has not been done so far in the context of cooperative behavior. This framework leads to a better understanding of the relation between intrinsic neurodynamics and observable agent-environment interactions. The results discussed here provide a new perspective on the evolution of cooperation because they deal with aspects largely neglected in traditional approaches, aspects such as embodiment, situatedness, and the dynamical nature of the mechanisms that underlie behavior. For the first time, it can be demonstrated how noise influences specific signaling strategies and that versatile dynamics of very small-scale neural networks embedded in sensory-motor feedback loops give rise to sophisticated forms of communication such as signal coordination, cooperative intraspecific communication, and, most intriguingly, aggressive interspecific signaling. Further, the results demonstrate the development of counteractive niche construction based on a modification of communication strategies which generates an evolutionary feedback resulting in an active reduction of selection pressure, which has not been shown so far. Thus, the novel findings presented here strongly support the complementary nature of robotic experiments to study the evolution and mechanisms of communication and cooperation.</p

    Representative time use data and new harmonised calibration of the American Heritage Time Use Data (AHTUD) 1965-1999

    Get PDF
    Representative and reliable individual time use data, in connection with a proper set of socio-economic back-ground variables, are essential elements for the empirical foundation and evaluation of existing and new theories in general and in particular for time use analyses. Within the international project Assessing Time Use Survey Datasets several potentially useful individual US time use heritage datasets have been identified for use in de-veloping an historical series of non-market accounts. In order to evaluate the series of American Heritage Time Use Data (AHTUD) (1965, 1975, 1985, 1992-94, 1998-99) this paper analyses the representativeness of this data when using given weights and provides a new harmonised calibration of the AHTUD for sound time use analyses. Our calibration procedure with its ADJUST program package is theoretically founded on information theory, consistent with a simultaneous weighting including hierarchical data, ensures desired positive weights, and is well-suited and available for any time use data calibration of interest. We present the calibration approach and provide new harmonised weights for all AHTUD surveys based on a substantially driven calibration frame-work. To illustrate the various application possibilities of a calibration, we finally disentangle demographic vs. time use behavioural changes and developments by re-calibrating all five AHTUD surveys using 1965 popula-tion totals as a benchmark.Representative time use data, calibration (adjustment re-weighting) of microdata, information theory, minimum information loss principle, American Heritage Time Use Data (AHTUD), ADJUST program package
    • …
    corecore