901 research outputs found

    Filtering Dishonest Trust Recommendations in Trust Management Systems in Mobile Ad Hoc Networks

    Get PDF
    Trust recommendations, having a pivotal role in computation of trust and hence confidence in peer to peer (P2P) environment, if hampered, may entail in colossal attacks from dishonest recommenders such as bad mouthing, ballot stuffing, random opinion etc. Therefore, mitigation of dishonest trust recommendations is stipulated as a challenging research issue in P2P systems (esp in Mobile Ad Hoc Networks). In order to cater these challenges associated with dishonest trust recommendations, a technique named “intelligently Selection of Trust Recommendations based on Dissimilarity factor (iSTRD)” has been devised for Mobile Ad Hoc Networks.  iSTRD exploits  personal experience of an “evaluating node” in conjunction with majority vote of the recommenders. It successfully removes the recommendations of “low trustworthy recommenders” as well as dishonest recommendations of “highly trustworthy recommenders”. Efficacy of proposed approach is evident from enhanced accuracy of “recognition rate”, “false rejection” and “false acceptance”.  Moreover, experiential results depict that iSTRD has unprecedented performance compared to contemporary techniques in presence of attacks asserted

    Recommendation based trust model with an effective defence scheme for MANETs

    Get PDF
    YesThe reliability of delivering packets through multi-hop intermediate nodes is a significant issue in the mobile ad hoc networks (MANETs). The distributed mobile nodes establish connections to form the MANET, which may include selfish and misbehaving nodes. Recommendation based trust management has been proposed in the literature as a mechanism to filter out the misbehaving nodes while searching for a packet delivery route. However, building a trust model that relies on the recommendations from other nodes in the network is vulnerable to the possible dishonest behaviour, such as bad-mouthing, ballot-stuffing, and collusion, of the recommending nodes. . This paper investigates the problems of attacks posed by misbehaving nodes while propagating recommendations in the existing trust models. We propose a recommendation based trust model with a defence scheme that utilises clustering technique to dynamically filter attacks related to dishonest recommendations within certain time based on number of interactions, compatibility of information and node closeness. The model is empirically tested in several mobile and disconnected topologies in which nodes experience changes in their neighbourhoods and consequently face frequent route changes. The empirical analysis demonstrates robustness and accuracy of the trust model in a dynamic MANET environment

    T-VNets: a novel Trust architecture for Vehicular Networks using the standardized messaging services of ETSI ITS

    Full text link
    In this paper we propose a novel trust establishment architecture fully compliant with the ETSI ITS standard which takes advantage of the periodically exchanged beacons (i.e. CAM) and event triggered messages (i.e. DENM). Our solution, called T-VNets, allows estimating the traffic density, the trust among entities, as well as the dishonest nodes distribution within the network. In addition, by combining different trust metrics such as direct, indirect, event-based and RSU-based trust, T-VNets is able to eliminate dishonest nodes from all network operations while selecting the best paths to deliver legal data messages by taking advantage of the link duration concept. Since our solution is able to adapt to environments with or without roadside units (RSUs), it can perform adequately both in urban and highway scenarios. Simulation results evidence that our proposal is more efficient than other existing solutions, being able to sustain performance levels even in worst-case scenarios. © 2016 Published by Elsevier B.VThis work was partially supported by both the Ministerio de Economia y Competitividad, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R, and the Ministere de l'enseignement superieur et de la recherche scientifique, Programme National Exceptionnel P.N.E 2015/2016, Algeria.Kerrache, CA.; Lagraa, N.; Tavares De Araujo Cesariny Calafate, CM.; Cano Escribá, JC.; Manzoni, P. (2016). T-VNets: a novel Trust architecture for Vehicular Networks using the standardized messaging services of ETSI ITS. Computer Communications. 93:68-83. https://doi.org/10.1016/j.comcom.2016.05.013S68839

    TFDD: A trust-based framework for reliable data delivery and DoS defense in VANETs

    Full text link
    [EN] A trust establishment scheme for enhancing inter-vehicular communication and preventing DoS attacks `TFDDÂż is proposed in this paper. Based on a developed intrusion detection module (IDM) and data centric verification, our framework allows preventing DDoS attacks and eliminating misbehaving nodes in a distributed, collaborative and instantaneous manner. In addition, a trusted routing protocol is proposed that, using context-based information such as link stability and trust information, delivers data through the most reliable way. In this study, the simulation results obtained demonstrate the effectiveness of our trust framework at detecting dishonest nodes, as well as malicious messages that are sent by honest or dishonest nodes, after a very low number of message exchanges. Furthermore, colluding attacks are detected in a small period of time, which results in network resources being released immediately after an overload period. We also show that, in a worst-case scenario, our trust-based framework is able to sustain performance levels, and outperforming existing solutions such as T-CLAIDS and AECFV.Kerrache, CA.; Lagraa, N.; Tavares De Araujo Cesariny Calafate, CM.; Lakas, A. (2017). TFDD: A trust-based framework for reliable data delivery and DoS defense in VANETs. Vehicular Communications. 9:254-267. doi:10.1016/j.vehcom.2016.11.010S254267

    Enhanced cluster based trust management framework for mobile Ad hoc networks

    Get PDF
    Trust management in decentralized networks and MANETs are much more complicated than the traditional access point based on wireless networks. The nodes in MANETs are used to provide trust information or evidence to find trustworthy nodes. However, the trust evaluation procedure depends on the local information due to its limited resources. In a trust management framework, there are issues to be resolved that include inefficient monitoring system with trust, inaccuracy in trust computation assign and lack of path selection based on trust. Therefore, in this research, a Trust Management Framework (TMF) was developed to address the aforementioned issues. The framework has the capability to monitor the network, assign trust values, and select an appropriate path for the transmission of packets among nodes which depends on the assignment of trust values. The TMF provides a secure cluster-based trust management to monitor the network that minimizes network overhead, improves path selection based on trust evaluation, and assigns trust for clusters-nodes with improved packet delivery ratio and delay. The performance of the TMF was assessed by performing simulation with Network Simulator version 2 (NS2). The results of the framework were compared with the state-of-the-art frameworks such as Requirement for Neural TMF (RNTMF), Recommendation Trust Framework with Defence Framework (RTMD), and Energy Efficient Secure Dynamic Source Routing (EESDSR). The results demonstrated that the Packets Delivery Ratio (PDR) of the TMF was 25.2% better than RNTMF, 21.4% better than RTMD, and 18.4% better than EESDSR. The overhead of the TMF was 4.5% less than RNTMF, 23.2% less than RTMD, and 26.8% less than EESDSR. The findings showed that TMF has better performance in terms of trust management in MANETs

    T2AR: trust-aware ad-hoc routing protocol for MANET

    Get PDF

    Secure 3G user authentication in ad-hoc serving networks

    Get PDF
    The convergence of cellular and IP technologies has pushed the integration of 3G and WLAN networks to the forefront. With 3G networks\u27 failure to deliver feasible bandwidth to the customer and the emerging popularity, ease of use and high throughput of 802.11 WLANs, integrating secure access to 3G services from WLANs has become a primary focus. 3G user authentication initiated from WLANs has been defined by an enhancement to the extensible authentication protocol, EAP, used to transport user authentication requests over WLANs. The EAP-AKA protocol executes the 3G USIM user challenge and response authentication process over the IP backbone for WLAN serving networks. To improve the degree of control of 3G subscribers, spatial control has been proposed for 3G-WLAN user authentication. Successful execution of 3G security algorithms can be limited to a specified area by encrypting a user\u27s authentication challenge with spatial data defining his/her visited WLAN. With 3G networks\u27 limited capacity to determine a user\u27s location to the granularity of a small WLAN area and restricted access to users\u27 location due to privacy, 3G operators must rely on spatial data sent from visited WLANs to implement control for authentication. The risks of implementing EAP-AKA spatial control by 3G operators with no prior relationship or trust for serving WLAN networks are presented in this paper. An ad-hoc architecture is proposed for serving networks in 3G-WLAN integration and the advantages of this architecture that facilitate secure 3G user authentication are identified. Algorithms are proposed to define robust trust relationships between the parties in 3G-WLAN networks. The security of 3G user authentication is further protected by new mechanisms defined that are based on the quality of trust established between parties
    • …
    corecore