6 research outputs found

    Taking antonymy mask off in vector space

    Get PDF
    Automatic detection of antonymy is an important task in Natural Language Processing (NLP) for Information Retrieval (IR), Ontology Learning (OL) and many other semantic applications. However, current unsupervised approaches to antonymy detection are still not fully effective because they cannot discriminate antonyms from synonyms. In this paper, we introduce APAnt, a new Average-Precision-based measure for the unsupervised discrimination of antonymy from synonymy using Distributional Semantic Models (DSMs). APAnt makes use of Average Precision to estimate the extent and salience of the intersection among the most descriptive contexts of two target words. Evaluation shows that the proposed method is able to distinguish antonyms and synonyms with high accuracy across different parts of speech, including nouns, adjectives and verbs. APAnt outperforms the vector cosine and a baseline model implementing the co-occurrence hypothesis

    Taking Antonymy Mask off in Vector Space

    Get PDF

    When Similarity Becomes Opposition: Synonyms and Antonyms Discrimination in DSMs

    Get PDF
    This paper analyzes the concept of opposition and describes a fully unsupervised method for its automatic discrimination from near-synonymy in Distributional Semantic Models (DSMs). The discriminating method is based on the hypothesis that, even though both near-synonyms and opposites are mostly distributionally similar, opposites are different from each other in at least one dimension of meaning, which can be assumed to be salient. Such hypothesis has been implemented in APAnt, a distributional measure that evaluates the extent of the intersection among the most relevant contexts of two words (where relevance is measured as mutual dependency), and its saliency (i.e. their average rank in the mutual dependency sorted list of contexts). The measure – previously introduced in some pilot studies – is presented here with two variants. Evaluation shows that it outperforms three baselines in an antonym retrieval task: the vector cosine, a baseline implementing the co-occurrence hypothesis, and a random rank. This paper describes the algorithm in details and analyzes its current limitations, suggesting that extensions may be developed for discriminating antonyms not only from near-synonyms but also from other semantic relations. During the evaluation, we have noticed that APAnt also has a particular preference for hypernyms

    Deep neural networks for identification of sentential relations

    Get PDF
    Natural language processing (NLP) is one of the most important technologies in the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate mostly in language: web search, advertisement, emails, customer service, language translation, etc. There are a large variety of underlying tasks and machine learning models powering NLP applications. Recently, deep learning approaches have obtained exciting performance across a broad array of NLP tasks. These models can often be trained in an end-to-end paradigm without traditional, task-specific feature engineering. This dissertation focuses on a specific NLP task --- sentential relation identification. Successfully identifying the relations of two sentences can contribute greatly to some downstream NLP problems. For example, in open-domain question answering, if the system can recognize that a new question is a paraphrase of a previously observed question, the known answers can be returned directly, avoiding redundant reasoning. For another, it is also helpful to discover some latent knowledge, such as inferring ``the weather is good today'' from another description ``it is sunny today''. This dissertation presents some deep neural networks (DNNs) which are developed to handle this sentential relation identification problem. More specifically, this problem is addressed by this dissertation in the following three aspects. (i) Sentential relation representation is built on the matching between phrases of arbitrary lengths. Stacked Convolutional Neural Networks (CNNs) are employed to model the sentences, so that each filter can cover a local phrase, and filters in lower level span shorter phrases and filters in higher level span longer phrases. CNNs in stack enable to model sentence phrases in different granularity and different abstraction. (ii) Phrase matches contribute differently to the tasks. This motivates us to propose an attention mechanism in CNNs for these tasks, differing from the popular research of attention mechanisms in Recurrent Neural Networks (RNNs). Attention mechanisms are implemented in both convolution layer as well as pooling layer in deep CNNs, in order to figure out automatically which phrase of one sentence matches a specific phrase of the other sentence. These matches are supposed to be indicative to the final decision. Another contribution in terms of attention mechanism is inspired by the observation that some sentential relation identification task, like answer selection for multi-choice question answering, is mainly determined by phrase alignments of stronger degree; in contrast, some tasks such as textual entailment benefit more from the phrase alignments of weaker degree. This motivates us to propose a dynamic ``attentive pooling'' to select phrase alignments of different intensities for different task categories. (iii) In certain scenarios, sentential relation can only be successfully identified within specific background knowledge, such as the multi-choice question answering based on passage comprehension. In this case, the relation between two sentences (question and answer candidate) depends on not only the semantics in the two sentences, but also the information encoded in the given passage. Overall, the work in this dissertation models sentential relations in hierarchical DNNs, different attentions and different background knowledge. All systems got state-of-the-art performances in representative tasks.Die Verarbeitung natĂŒrlicher Sprachen (engl.: natural language processing - NLP) ist eine der wichtigsten Technologien des Informationszeitalters. Weiterhin ist das Verstehen komplexer sprachlicher AusdrĂŒcke ein essentieller Teil kĂŒnstlicher Intelligenz. Anwendungen von NLP sind ĂŒberall zu finden, da Menschen haupt\-sĂ€ch\-lich ĂŒber Sprache kommunizieren: Internetsuchen, Werbung, E-Mails, Kundenservice, Übersetzungen, etc. Es gibt eine große Anzahl Tasks und Modelle des maschinellen Lernens fĂŒr NLP-Anwendungen. In den letzten Jahren haben Deep-Learning-AnsĂ€tze vielversprechende Ergebnisse fĂŒr eine große Anzahl verschiedener NLP-Tasks erzielt. Diese Modelle können oft end-to-end trainiert werden, kommen also ohne auf den Task zugeschnittene Feature aus. Diese Dissertation hat einen speziellen NLP-Task als Fokus: Sententielle Relationsidentifizierung. Die Beziehung zwischen zwei SĂ€tzen erfolgreich zu erkennen, kann die Performanz fĂŒr nachfolgende NLP-Probleme stark verbessern. FĂŒr open-domain question answering, zum Beispiel, kann ein System, das erkennt, dass eine neue Frage eine Paraphrase einer bereits gesehenen Frage ist, die be\-kann\-te Antwort direkt zurĂŒckgeben und damit mehrfaches Schlussfolgern vermeiden. Zudem ist es auch hilfreich, zu Grunde liegendes Wissen zu entdecken, so wie das Schließen der Tatsache "das Wetter ist gut" aus der Beschreibung "es ist heute sonnig". Diese Dissertation stellt einige tiefe neuronale Netze (eng.: deep neural networks - DNNs) vor, die speziell fĂŒr das Problem der sententiellen Re\-la\-tions\-i\-den\-ti\-fi\-zie\-rung entwickelt wurden. Im Speziellen wird dieses Problem in dieser Dissertation unter den folgenden drei Aspekten behandelt: (i) Sententielle Relationsrepr\"{a}sentationen basieren auf einem Matching zwischen Phrasen beliebiger LĂ€nge. Tiefe convolutional neural networks (CNNs) werden verwendet, um diese SĂ€tze zu modellieren, sodass jeder Filter eine lokale Phrase abdecken kann, wobei Filter in niedrigeren Schichten kĂŒrzere und Filter in höheren Schichten lĂ€ngere Phrasen umfassen. Tiefe CNNs machen es möglich, SĂ€tze in unterschiedlichen GranularitĂ€ten und Abstraktionsleveln zu modellieren. (ii) Matches zwischen Phrasen tragen unterschiedlich zu unterschiedlichen Tasks bei. Das motiviert uns, einen Attention-Mechanismus fĂŒr CNNs fĂŒr diese Tasks einzufĂŒhren, der sich von dem bekannten Attention-Mechanismus fĂŒr recurrent neural networks (RNNs) unterscheidet. Wir implementieren Attention-Mechanismen sowohl im convolution layer als auch im pooling layer tiefer CNNs, um herauszufinden, welche Phrasen eines Satzes bestimmten Phrasen eines anderen Satzes entsprechen. Wir erwarten, dass solche Matches die finale Entscheidung stark beeinflussen. Ein anderer Beitrag zu Attention-Mechanismen wurde von der Beobachtung inspiriert, dass einige sententielle Relationsidentifizierungstasks, zum Beispiel die Auswahl einer Antwort fĂŒr multi-choice question answering hauptsĂ€chlich von Phrasen\-a\-lignie\-rungen stĂ€rkeren Grades bestimmt werden. Im Gegensatz dazu profitieren andere Tasks wie textuelles Schließen mehr von Phrasenalignierungen schwĂ€cheren Grades. Das motiviert uns, ein dynamisches "attentive pooling" zu entwickeln, um Phrasenalignierungen verschiedener StĂ€rken fĂŒr verschiedene Taskkategorien auszuwĂ€hlen. (iii) In bestimmten Szenarien können sententielle Relationen nur mit entsprechendem Hintergrundwissen erfolgreich identifiziert werden, so wie multi-choice question answering auf der Grundlage des VerstĂ€ndnisses eines Absatzes. In diesem Fall hĂ€ngt die Relation zwischen zwei SĂ€tzen (der Frage und der möglichen Antwort) nicht nur von der Semantik der beiden SĂ€tze, sondern auch von der in dem gegebenen Absatz enthaltenen Information ab. Insgesamt modellieren die in dieser Dissertation enthaltenen Arbeiten sententielle Relationen in hierarchischen DNNs, mit verschiedenen Attention-Me\-cha\-nis\-men und wenn unterschiedliches Hintergrundwissen zur Verf\ {u}gung steht. Alle Systeme erzielen state-of-the-art Ergebnisse fĂŒr die entsprechenden Tasks

    Word Knowledge and Word Usage

    Get PDF
    Word storage and processing define a multi-factorial domain of scientific inquiry whose thorough investigation goes well beyond the boundaries of traditional disciplinary taxonomies, to require synergic integration of a wide range of methods, techniques and empirical and experimental findings. The present book intends to approach a few central issues concerning the organization, structure and functioning of the Mental Lexicon, by asking domain experts to look at common, central topics from complementary standpoints, and discuss the advantages of developing converging perspectives. The book will explore the connections between computational and algorithmic models of the mental lexicon, word frequency distributions and information theoretical measures of word families, statistical correlations across psycho-linguistic and cognitive evidence, principles of machine learning and integrative brain models of word storage and processing. Main goal of the book will be to map out the landscape of future research in this area, to foster the development of interdisciplinary curricula and help single-domain specialists understand and address issues and questions as they are raised in other disciplines
    corecore