22 research outputs found

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    Orthogonal transmultiplexers in communication: a review

    Full text link

    Joint bit allocation and precoding for filterbank transceivers in NOFDM systems

    Get PDF
    Recently, the non orthogonal frequency division multiplexing (NOFDM) systems have attracted increased interest. They have several advantages over traditional OFDM systems: higher bandwidth efficiency; reduced sensitivity to carrier frequency offsets, oscillator phase noise and narrowband interference; and reduced intersymbol/intercarrier interference (ISI/ICI). In particular, low ISI/ICI will be important for future systems where Doppler frequencies will be larger (equivalently, channel variations will be faster) due to higher carrier frequencies and higher mobile velocities. In the first part of this thesis the duality of multicarrier systems and Gabor frames is discussed and applied to the design of a generalized multicarrier system based on a filterbank structure. The efficient polyphase implementation is also discussed. In this thesis the channel capacity of a GMC systems is evaluated through the diagonalization of an equivalent matrix model where intersymbol and intercarrier interferences have been included. Exploiting the majorization theory, the mutual information can be represented as a Schur-concave function and it is maximized through a joint transceiver design adding a linear precoder at the transmitter and a LMMSE equalizer at the receiver. The capacity is derived by the eigenvalue decomposition of the global system matrix including the noise colored by the receiver filtering and employing a power allocation of the transmitted power according to the well-known water-filling solution. This thesis investigates also the behaviour of the NOFDM systems when a power and bit allocation algorithm (like the Campello one) is employed in order to satisfy a certain QoS constrain. A comparison of the performances with OFDM systems is included. Finally a simple application of the cognitive radio paradigm employing filterbankbased multicarrier systems is developed and some interesting results are showed

    An enhanced multicarrier modulation system for mobile communications

    Get PDF
    PhD ThesisThe recent revolution in mobile communications and the increased demand on more efficient transmission systems influence the research to enhance and invent new modulation techniques. Orthogonal frequency division multiplexing with offset quadrature amplitude modulation (OFDM/OQAM) is one of the multicarrier modulations techniques that overcomes some of the weaknesses of the conventional OFDM in term of bandwidth and power efficiencies. This thesis presents a novel multicarrier modulation scheme with improved performance in mobile communications context. Initially, the theoretical principles behind OFDM and OFDM/OQAM are discussed and the advantages of OFDM/OQAM over OFDM are highlighted. The time-frequency localization of pulse shapes is examined over different types of pulses. The effect of the localization and the pulse choice on OFDM/OQAM performance is demonstrated. The first contribution is introducing a new variant of multicarrier modulation system based on the integration of the Walsh-Hadamard transform with the OFDM/OQAM modulator. The full analytical transmission model of the system is derived over flat fading and frequency selective channels. Next, because of the critical requirement of low implementation complexity in mobile systems, a new fast algorithm transform is developed to reduce the implementation complexity of the system. The introduced fast algorithm has demonstrated a remarkable 60 percent decrease in the hardware requirement compared to the cascaded configuration. Although, the problem of high peak to average power ratio (PAPR) is one of the main drawbacks that associated with most multicarrier modulation techniques, the new system achieved lower values compared to the conventional systems. Subsequently, three new algorithms to reduce PAPR named Walsh overlapped selective mapping (WOSLM) for a high PAPR reduction, simplified selective mapping (SSLM) for a very low implementation complexity and Walsh partial transmit sequence (WPTS), are developed. Finally, in order to assess the reliability of the presented system in this thesis at imperfect environments, the performance of the system is investigated in the presence of high power amplifier, channel estimation errors, and carrier frequency offset (CFO). Two channel estimations algorithms named enhanced pair of pilots (EPOP) and averaged enhanced pair of pilots (AEPOP), and one CFO estimator technique called frequency domain (FD) CFO estimator, are suggested to provide reliable performance.Ministry of Higher Education and Scientific Research (MOHSR) of Ira

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Filtered Multicarrier Transmission

    Get PDF
    Orthogonal frequency‐division multiplexing (OFDM) has been adopted as the waveform of choice in the existing and emerging broadband wireless communication systems for a number of advantages it can offer. Nevertheless, investigations of more advanced multicarrier transmission schemes have continued with the aim of eliminating or mitigating its essential limitations. This article discusses multicarrier schemes with enhanced spectrum localization, which manage to reduce the spectral sidelobes of plain OFDM that are problematic in various advanced communication scenarios. These include schemes for enhancing the OFDM waveform characteristics through additional signal processing as well as filter‐bank multicarrier (FBMC) waveforms utilizing frequency‐selective filter banks instead of plain (inverse) discrete Fourier transform processing for waveform generation and demodulation.acceptedVersionPeer reviewe

    Spectrum Adaptation in Cognitive Radio Systems with Operating Constraints

    Get PDF
    The explosion of high-data-rate-demanding wireless applications such as smart-phones and wireless Internet access devices, together with growth of existing wireless services, are creating a shortage of the scarce Radio Frequency (RF) spectrum. However, several spectrum measurement campaigns revealed that current spectrum usage across time and frequency is inefficient, creating the artificial shortage of the spectrum because of the traditional exclusive command-and-control model of using the spectrum. Therefore, a new concept of Cognitive Radio (CR) has been emerging recently in which unlicensed users temporarily borrow spectrum from the licensed Primary Users (PU) based on the Dynamic Spectrum Access (DSA) technique that is also known as the spectrum sharing concept. A CR is an intelligent radio system based on the Software Defined Radio platform with artificial intelligence capability which can learn, adapt, and reconfigure through interaction with the operating environment. A CR system will revolutionize the way people share the RF spectrum, lowering harmful interference to the licensed PU of the spectrum, fostering innovative DSA technology and giving people more choices when it comes to using the wireless-communication-dependent applications without having any spectrum congestion problems. A key technical challenge for enabling secondary access to the licensed spectrum adaptation is to ensure that the CR does not interfere with the licensed incumbent users. However, incumbent user behavior is dynamic and requires CR systems to adapt this behavior in order to maintain smooth information transmission. In this context, the objective of this dissertation is to explore design issues for CR systems focusing on adaptation of physical layer parameters related to spectrum sensing, spectrum shaping, and rate/power control. Specifically, this dissertation discusses dynamic threshold adaptation for energy detector spectrum sensing, spectrum allocation and power control in Orthogonal Frequency Division Multiplexing-(OFDM-)based CR with operating constraints, and adjacent band interference suppression techniques in turbo-coded OFDM-based CR systems

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore