431 research outputs found

    Full-Duplex Relaying in MIMO-OFDM Frequency-Selective Channels with Optimal Adaptive Filtering

    Get PDF
    In-band full-duplex transmission allows a relay station to theoretically double its spectral efficiency by simultaneously receiving and transmitting in the same frequency band, when compared to the traditional half-duplex or out-of-band full-duplex counterpart. Consequently, the induced self-interference suffered by the relay may reach considerable power levels, which decreases the signal-to-interference-plus-noise ratio (SINR) in a decode-and-forward (DF) relay, leading to a degradation of the relay performance. This paper presents a technique to cope with the problem of self-interference in broadband multiple-input multiple-output (MIMO) relays. The proposed method uses a time-domain cancellation in a DF relay, where a replica of the interfering signal is created with the help of a recursive least squares (RLS) algorithm that estimates the interference frequency-selective channel. Its convergence mean time is shown to be negligible by simulation results, when compared to the length of a typical orthogonal-frequency division multiplexing (OFDM) sequences. Moreover, the bit-error-rate (BER) and the SINR in a OFDM transmission are evaluated, confirming that the proposed method extends significantly the range of self-interference power to which the relay is resilient to, when compared with other mitigation schemes

    Harnessing Self-Interference in Full-Duplex Relaying: An Analog Filter-and-Forward Approach

    Full text link
    This paper studies a full-duplex filter-and-forward (FD-FF) relay system in frequency-selective channels. Conventionally, the loop-back signal at the FD relay is treated as harmful self-interference and needs to be significantly suppressed via both analog- and digital-domain cancellation. However, the performance of the conventional self-interference cancellation approach is fundamentally limited due to the quantization error induced by the analog-to-digital converter (ADC) with limited dynamic range. In this paper, we consider an analog filter-and-forward design to help avoid the quantization error, and surprisingly show that the maximum achievable rate of such an FD-FF relay system is in fact regardless of the loop-back channel at the FD relay. We characterize the maximum achievable rate of this channel by jointly optimizing the transmit power allocation over frequency at the source and the frequency response of the filter at the relay, subject to their individual power constraints. Although this problem is non-convex, we obtain its optimal solution by applying the Lagrange duality method. By simulations it is shown that the proposed joint source and relay optimization achieves rate gains over other heuristic designs, and is also advantageous over the conventional approach by cancelling the relay loop-back signal as self-interference, especially when the residual self-interference after cancellation is still significant.Comment: This is a paper to be presented in Globecom 201

    Optimal Training for Residual Self-Interference for Full Duplex One-way Relays

    Full text link
    Channel estimation and optimal training sequence design for full-duplex one-way relays are investigated. We propose a training scheme to estimate the residual self-interference (RSI) channel and the channels between nodes simultaneously. A maximum likelihood estimator is implemented with Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. In the presence of RSI, the overall source-to-destination channel becomes an inter-symbol-interference (ISI) channel. With the help of estimates of the RSI channel, the destination is able to cancel the ISI through equalization. We derive and analyze the Cramer-Rao bound (CRB) in closed-form by using the asymptotic properties of Toeplitz matrices. The optimal training sequence is obtained by minimizing the CRB. Extensions for the fundamental one-way relay model to the frequency-selective fading channels and the multiple relays case are also considered. For the former, we propose a training scheme to estimate the overall channel, and for the latter the CRB and the optimal number of relays are derived when the distance between the source and the destination is fixed. Simulations using LTE parameters corroborate our theoretical results

    Partial-Duplex Amplify-and-Forward Relaying: Spectral Efficiency Analysis under Self-Interference

    Full text link
    We propose a novel mode of operation for Amplify-and-Forward relays in which the spectra of the relay input and output signals partially overlap. This partial-duplex relaying mode encompasses half-duplex and full-duplex as particular cases. By viewing the partial-duplex relay as a bandwidth-preserving Linear Periodic Time-Varying system, an analysis of the spectral efficiency in the presence of self-interference is developed. In contrast with previous works, self-interference is regarded as a useful information-bearing component rather than simply assimilated to noise. This approach reveals that previous results regarding the impact of self-interference on (full-duplex) relay performance are overly pessimistic. Based on a frequency-domain interpretation of the effect of self-interference, a number of suboptimal decoding architectures at the destination node are also discussed. It is found that the partial-duplex relaying mode may provide an attractive tradeoff between spectral efficiency and receiver complexity.Comment: Submitted to IEEE Transactions on Wireless Communication

    Outage Probability of Multi-hop Networks with Amplify-and-Forward Full-duplex Relaying

    Get PDF
    abstract: Full-duplex communication has attracted significant attention as it promises to increase the spectral efficiency compared to half-duplex. Multi-hop full-duplex networks add new dimensions and capabilities to cooperative networks by facilitating simultaneous transmission and reception and improving data rates. When a relay in a multi-hop full-duplex system amplifies and forwards its received signals, due to the presence of self-interference, the input-output relationship is determined by recursive equations. This thesis introduces a signal flow graph approach to solve the problem of finding the input-output relationship of a multi-hop amplify-and-forward full-duplex relaying system using Mason's gain formula. Even when all links have flat fading channels, the residual self-interference component due to imperfect self-interference cancellation at the relays results in an end-to-end effective channel that is an all-pole frequency-selective channel. Also, by assuming the relay channels undergo frequency-selective fading, the outage probability analysis is performed and the performance is compared with the case when the relay channels undergo frequency-flat fading. The outage performance of this system is performed assuming that the destination employs an equalizer or a matched filter. For the case of a two-hop (single relay) full-duplex amplify-and-forward relaying system, the bounds on the outage probability are derived by assuming that the destination employs a matched filter or a minimum mean squared error decision feedback equalizer. For the case of a three-hop (two-relay) system with frequency-flat relay channels, the outage probability analysis is performed by considering the output SNR of different types of equalizers and matched filter at the destination. Also, the closed-form upper bounds on the output SNR are derived when the destination employs a minimum mean squared error decision feedback equalizer which is used in outage probability analysis. It is seen that for sufficiently high target rates, full-duplex relaying with equalizers is always better than half-duplex relaying in terms of achieving lower outage probability, despite the higher RSI. In contrast, since full-duplex relaying with MF is sensitive to RSI, it is outperformed by half-duplex relaying under strong RSI.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Filter-And-Forward Relay Design for MIMO-OFDM Systems

    Full text link
    In this paper, the filter-and-forward (FF) relay design for multiple-input multiple-output (MIMO) orthogonal frequency-division multiplexing (OFDM) systems is considered. Due to the considered MIMO structure, the problem of joint design of the linear MIMO transceiver at the source and the destination and the FF relay at the relay is considered. As the design criterion, the minimization of weighted sum mean-square-error (MSE) is considered first, and the joint design in this case is approached based on alternating optimization that iterates between optimal design of the FF relay for a given set of MIMO precoder and decoder and optimal design of the MIMO precoder and decoder for a given FF relay filter. Next, the joint design problem for rate maximization is considered based on the obtained result regarding weighted sum MSE and the existing result regarding the relationship between weighted MSE minimization and rate maximization. Numerical results show the effectiveness of the proposed FF relay design and significant performance improvement by FF relays over widely-considered simple AF relays for MIMO-ODFM systems.Comment: 29 pages, 6 figure

    A Journey from Improper Gaussian Signaling to Asymmetric Signaling

    Full text link
    The deviation of continuous and discrete complex random variables from the traditional proper and symmetric assumption to a generalized improper and asymmetric characterization (accounting correlation between a random entity and its complex conjugate), respectively, introduces new design freedom and various potential merits. As such, the theory of impropriety has vast applications in medicine, geology, acoustics, optics, image and pattern recognition, computer vision, and other numerous research fields with our main focus on the communication systems. The journey begins from the design of improper Gaussian signaling in the interference-limited communications and leads to a more elaborate and practically feasible asymmetric discrete modulation design. Such asymmetric shaping bridges the gap between theoretically and practically achievable limits with sophisticated transceiver and detection schemes in both coded/uncoded wireless/optical communication systems. Interestingly, introducing asymmetry and adjusting the transmission parameters according to some design criterion render optimal performance without affecting the bandwidth or power requirements of the systems. This dual-flavored article initially presents the tutorial base content covering the interplay of reality/complexity, propriety/impropriety and circularity/noncircularity and then surveys majority of the contributions in this enormous journey.Comment: IEEE COMST (Early Access

    Channel Estimation in Half and Full Duplex Relays

    Get PDF
    abstract: Both two-way relays (TWR) and full-duplex (FD) radios are spectrally efficient, and their integration shows great potential to further improve the spectral efficiency, which offers a solution to the fifth generation wireless systems. High quality channel state information (CSI) are the key components for the implementation and the performance of the FD TWR system, making channel estimation in FD TWRs crucial. The impact of channel estimation on spectral efficiency in half-duplex multiple-input-multiple-output (MIMO) TWR systems is investigated. The trade-off between training and data energy is proposed. In the case that two sources are symmetric in power and number of antennas, a closed-form for the optimal ratio of data energy to total energy is derived. It can be shown that the achievable rate is a monotonically increasing function of the data length. The asymmetric case is discussed as well. Efficient and accurate training schemes for FD TWRs are essential for profiting from the inherent spectrally efficient structures of both FD and TWRs. A novel one-block training scheme with a maximum likelihood (ML) estimator is proposed to estimate the channels between the nodes and the residual self-interference (RSI) channel simultaneously. Baseline training schemes are also considered to compare with the one-block scheme. The Cramer-Rao bounds (CRBs) of the training schemes are derived and analyzed by using the asymptotic properties of Toeplitz matrices. The benefit of estimating the RSI channel is shown analytically in terms of Fisher information. To obtain fundamental and analytic results of how the RSI affects the spectral efficiency, one-way FD relay systems are studied. Optimal training design and ML channel estimation are proposed to estimate the RSI channel. The CRBs are derived and analyzed in closed-form so that the optimal training sequence can be found via minimizing the CRB. Extensions of the training scheme to frequency-selective channels and multiple relays are also presented. Simultaneously sensing and transmission in an FD cognitive radio system with MIMO is considered. The trade-off between the transmission rate and the detection accuracy is characterized by the sum-rate of the primary and the secondary users. Different beamforming and combining schemes are proposed and compared.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    MIMO communications over relay channels

    Get PDF

    Cooperative Multi-Cell Networks: Impact of Limited-Capacity Backhaul and Inter-Users Links

    Full text link
    Cooperative technology is expected to have a great impact on the performance of cellular or, more generally, infrastructure networks. Both multicell processing (cooperation among base stations) and relaying (cooperation at the user level) are currently being investigated. In this presentation, recent results regarding the performance of multicell processing and user cooperation under the assumption of limited-capacity interbase station and inter-user links, respectively, are reviewed. The survey focuses on related results derived for non-fading uplink and downlink channels of simple cellular system models. The analytical treatment, facilitated by these simple setups, enhances the insight into the limitations imposed by limited-capacity constraints on the gains achievable by cooperative techniques
    corecore