303 research outputs found

    An integrated approach to global synchronization and state estimation for nonlinear singularly perturbed complex networks

    Get PDF
    This paper aims to establish a unified framework to handle both the exponential synchronization and state estimation problems for a class of nonlinear singularly perturbed complex networks (SPCNs). Each node in the SPCN comprises both 'slow' and 'fast' dynamics that reflects the singular perturbation behavior. General sector-like nonlinear function is employed to describe the nonlinearities existing in the network. All nodes in the SPCN have the same structures and properties. By utilizing a novel Lyapunov functional and the Kronecker product, it is shown that the addressed SPCN is synchronized if certain matrix inequalities are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that dynamics (both slow and fast) of the estimation error is guaranteed to be globally asymptotically stable. Again, a matrix inequality approach is developed for the state estimation problem. Two numerical examples are presented to verify the effectiveness and merits of the proposed synchronization scheme and state estimation formulation. It is worth mentioning that our main results are still valid even if the slow subsystems within the network are unstable

    H ? filtering for stochastic singular fuzzy systems with time-varying delay

    Get PDF
    This paper considers the H? filtering problem for stochastic singular fuzzy systems with timevarying delay. We assume that the state and measurement are corrupted by stochastic uncertain exogenous disturbance and that the system dynamic is modeled by Ito-type stochastic differential equations. Based on an auxiliary vector and an integral inequality, a set of delay-dependent sufficient conditions is established, which ensures that the filtering error system is e?t - weighted integral input-to-state stable in mean (iISSiM). A fuzzy filter is designed such that the filtering error system is impulse-free, e?t -weighted iISSiM and the H? attenuation level from disturbance to estimation error is belowa prescribed scalar.Aset of sufficient conditions for the solvability of the H? filtering problem is obtained in terms of a new type of Lyapunov function and a set of linear matrix inequalities. Simulation examples are provided to illustrate the effectiveness of the proposed filtering approach developed in this paper

    H

    Get PDF
    This paper investigates the problem of H∞ filtering for class discrete-time Lipschitz nonlinear singular systems with measurement quantization. Assume that the system measurement output is quantized by a static, memoryless, and logarithmic quantizer before it is transmitted to the filter, while the quantizer errors can be treated as sector-bound uncertainties. The attention of this paper is focused on the design of a nonlinear quantized H∞ filter to mitigate quantization effects and ensure that the filtering error system is admissible (asymptotically stable, regular, and causal), while having a unique solution with a prescribed H∞ noise attenuation level. By introducing some slack variables and using the Lyapunov stability theory, some sufficient conditions for the existence of the nonlinear quantized H∞ filter are expressed in terms of linear matrix inequalities (LMIs). Finally, a numerical example is presented to demonstrate the effectiveness of the proposed quantized filter design method

    H∞ fuzzy filtering of nonlinear systems with intermittent measurements

    Get PDF
    This paper is concerned with the problem of H∞ fuzzy filtering of nonlinear systems with intermittent measurements. The nonlinear plant is represented by a Takagi-Sugeno (T-S) fuzzy model. The measurements transmission from the plant to the filter is assumed to be imperfect, and a stochastic variable satisfying the Bernoulli random binary distribution is utilized to model the phenomenon of the missing measurements. Attention is focused on the design of an H∞ filter such that the filter error system is stochastically stable and preserves a guaranteed H∞ performance. A basis-dependent Lyapunov function approach is developed to design the H∞ filter. By introducing some slack matrix variables, the coupling between the Lyapunov matrix and the system matrices is eliminated, which greatly facilitates the filter-design procedure. The developed theoretical results are in the form of linear matrix inequalities (LMIs). Finally, an illustrative example is provided to show the effectiveness of the proposed approach. © 2009 IEEE.published_or_final_versio

    Finite Frequency H

    Get PDF
    This paper investigates the problem of finite frequency (FF) H∞ filtering for time-delayed singularly perturbed systems. Our attention is focused on designing filters guaranteeing asymptotic stability and FF H∞ disturbance attenuation level of the filtering error system. By the generalized Kalman-Yakubovich-Popov (KYP) lemma, the existence conditions of FF H∞ filters are obtained in terms of solving an optimization problem, which is delay-independent. The main contribution of this paper is that systematic methods are proposed for designing H∞ filters for delayed singularly perturbed systems

    Stability analysis and stabilization for discrete-time fuzzy systems with time-varying delay

    Get PDF
    This paper is concerned with the problems of stability analysis and stabilization for discrete-time Takagi-Sugeno fuzzy systems with time-varying state delay. By constructing a new fuzzy Lyapunov function and by making use of novel techniques, an improved delay-dependent stability condition is obtained, which is dependent on the lower and upper delay bounds. The merit of the proposed stability condition lies in its reduced conservatism, which is achieved by avoiding the utilization of some bounding inequalities for the cross products between two vectors. Then, delay-dependent stabilization approach based on a parallel distributed compensation scheme is developed for both state feedback and observer-based output feedback cases. The proposed stability and stabilization conditions are formulated in terms of linear matrix inequalities, which can be solved efficiently by using existing optimization techniques. Two illustrative examples are provided to demonstrate the effectiveness of the results proposed in this paper. © 2008 IEEE.published_or_final_versio

    A Novel Neuroglial Architecture for Modelling Singular Perturbation System

    Get PDF
    This work develops a new modular architecture that emulates a recently-discovered biological paradigm. It originates from the human brain where the information flows along two different pathways and is processed along two time scales: one is a fast neural network (NN) and the other is a slow network called the glial network (GN). It was found that the neural network is powered and controlled by the glial network. Based on our biological knowledge of glial cells and the powerful concept of modularity, a novel approach called artificial neuroglial Network (ANGN) was designed and an algorithm based on different concepts of modularity was also developed. The implementation is based on the notion of multi-time scale systems. Validation is performed through an asynchronous machine (ASM) modeled in the standard singularly perturbed form. We apply the geometrical approach, based on Gerschgorin’s circle theorem (GCT), to separate the fast and slow variables, as well as the singular perturbation method (SPM) to determine the reduced models. This new architecture makes it possible to obtain smaller networks with less complexity and better performance

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications
    • …
    corecore