4,764 research outputs found

    Network Density of States

    Full text link
    Spectral analysis connects graph structure to the eigenvalues and eigenvectors of associated matrices. Much of spectral graph theory descends directly from spectral geometry, the study of differentiable manifolds through the spectra of associated differential operators. But the translation from spectral geometry to spectral graph theory has largely focused on results involving only a few extreme eigenvalues and their associated eigenvalues. Unlike in geometry, the study of graphs through the overall distribution of eigenvalues - the spectral density - is largely limited to simple random graph models. The interior of the spectrum of real-world graphs remains largely unexplored, difficult to compute and to interpret. In this paper, we delve into the heart of spectral densities of real-world graphs. We borrow tools developed in condensed matter physics, and add novel adaptations to handle the spectral signatures of common graph motifs. The resulting methods are highly efficient, as we illustrate by computing spectral densities for graphs with over a billion edges on a single compute node. Beyond providing visually compelling fingerprints of graphs, we show how the estimation of spectral densities facilitates the computation of many common centrality measures, and use spectral densities to estimate meaningful information about graph structure that cannot be inferred from the extremal eigenpairs alone.Comment: 10 pages, 7 figure

    Compressive Spectral Clustering

    Get PDF
    Spectral clustering has become a popular technique due to its high performance in many contexts. It comprises three main steps: create a similarity graph between N objects to cluster, compute the first k eigenvectors of its Laplacian matrix to define a feature vector for each object, and run k-means on these features to separate objects into k classes. Each of these three steps becomes computationally intensive for large N and/or k. We propose to speed up the last two steps based on recent results in the emerging field of graph signal processing: graph filtering of random signals, and random sampling of bandlimited graph signals. We prove that our method, with a gain in computation time that can reach several orders of magnitude, is in fact an approximation of spectral clustering, for which we are able to control the error. We test the performance of our method on artificial and real-world network data.Comment: 12 pages, 2 figure

    Spectral Graph Forge: Graph Generation Targeting Modularity

    Full text link
    Community structure is an important property that captures inhomogeneities common in large networks, and modularity is one of the most widely used metrics for such community structure. In this paper, we introduce a principled methodology, the Spectral Graph Forge, for generating random graphs that preserves community structure from a real network of interest, in terms of modularity. Our approach leverages the fact that the spectral structure of matrix representations of a graph encodes global information about community structure. The Spectral Graph Forge uses a low-rank approximation of the modularity matrix to generate synthetic graphs that match a target modularity within user-selectable degree of accuracy, while allowing other aspects of structure to vary. We show that the Spectral Graph Forge outperforms state-of-the-art techniques in terms of accuracy in targeting the modularity and randomness of the realizations, while also preserving other local structural properties and node attributes. We discuss extensions of the Spectral Graph Forge to target other properties beyond modularity, and its applications to anonymization
    • …
    corecore