19,760 research outputs found

    Approximate Two-Party Privacy-Preserving String Matching with Linear Complexity

    Full text link
    Consider two parties who want to compare their strings, e.g., genomes, but do not want to reveal them to each other. We present a system for privacy-preserving matching of strings, which differs from existing systems by providing a deterministic approximation instead of an exact distance. It is efficient (linear complexity), non-interactive and does not involve a third party which makes it particularly suitable for cloud computing. We extend our protocol, such that it mitigates iterated differential attacks proposed by Goodrich. Further an implementation of the system is evaluated and compared against current privacy-preserving string matching algorithms.Comment: 6 pages, 4 figure

    A comparative evaluation of name-matching algorithms

    Full text link
    Name matching—recognizing when two different strings are likely to denote the same entity—is an important task in many legal information systems, such as case-management systems. The naming conventions peculiar to legal cases limit the effectiveness of generic approximate string-matching algorithms in this task. This paper proposes a three-stage framework for name matching, identifies how each stage in the framework addresses the naming variations that typically arise in legal cases, describes several alternative approaches to each stage, and evaluates the performance of various combinations of the alternatives on a representative collection of names drawn from a United States District Court case management system. The best tradeoff between accuracy and efficiency in this collection was achieved by algorithms that standardize capitalization, spacing, and punctuation; filter redundant terms; index using an abstraction function that is both order-insensitive and tolerant of small numbers of omissions or additions; and compare names in a symmetrical, word-by-word fashion. 1

    A Bloom filter based semi-index on qq-grams

    Full text link
    We present a simple qq-gram based semi-index, which allows to look for a pattern typically only in a small fraction of text blocks. Several space-time tradeoffs are presented. Experiments on Pizza & Chili datasets show that our solution is up to three orders of magnitude faster than the Claude et al. \cite{CNPSTjda10} semi-index at a comparable space usage

    Linear Algorithm for Conservative Degenerate Pattern Matching

    Full text link
    A degenerate symbol x* over an alphabet A is a non-empty subset of A, and a sequence of such symbols is a degenerate string. A degenerate string is said to be conservative if its number of non-solid symbols is upper-bounded by a fixed positive constant k. We consider here the matching problem of conservative degenerate strings and present the first linear-time algorithm that can find, for given degenerate strings P* and T* of total length n containing k non-solid symbols in total, the occurrences of P* in T* in O(nk) time
    • …
    corecore