184 research outputs found

    OCTAVA: An open-source toolbox for quantitative analysis of optical coherence tomography angiography images

    Get PDF
    Optical coherence tomography angiography (OCTA) performs non-invasive visualization and characterization of microvasculature in research and clinical applications mainly in ophthalmology and dermatology. A wide variety of instruments, imaging protocols, processing methods and metrics have been used to describe the microvasculature, such that comparing different study outcomes is currently not feasible. With the goal of contributing to standardization of OCTA data analysis, we report a user-friendly, open-source toolbox, OCTAVA (OCTA Vascular Analyzer), to automate the pre-processing, segmentation, and quantitative analysis of en face OCTA maximum intensity projection images in a standardized workflow. We present each analysis step, including optimization of filtering and choice of segmentation algorithm, and definition of metrics. We perform quantitative analysis of OCTA images from different commercial and non-commercial instruments and samples and show OCTAVA can accurately and reproducibly determine metrics for characterization of microvasculature. Wide adoption could enable studies and aggregation of data on a scale sufficient to develop reliable microvascular biomarkers for early detection, and to guide treatment, of microvascular disease

    3D minutiae extraction in 3D fingerprint scans.

    Get PDF
    Traditionally, fingerprint image acquisition was based on contact. However the conventional touch-based fingerprint acquisition introduces some problems such as distortions and deformations to the fingerprint image. The most recent technology for fingerprint acquisition is touchless or 3D live scans introducing higher quality fingerprint scans. However, there is a need to develop new algorithms to match 3D fingerprints. In this dissertation, a novel methodology is proposed to extract minutiae in the 3D fingerprint scans. The output can be used for 3D fingerprint matching. The proposed method is based on curvature analysis of the surface. The method used to extract minutiae includes the following steps: smoothing; computing the principal curvature; ridges and ravines detection and tracing; cleaning and connecting ridges and ravines; and minutiae detection. First, the ridges and ravines are detected using curvature tensors. Then, ridges and ravines are traced. Post-processing is performed to obtain clean and connected ridges and ravines based on fingerprint pattern. Finally, minutiae are detected using a graph theory concept. A quality map is also introduced for 3D fingerprint scans. Since a degraded area may occur during the scanning process, especially at the edge of the fingerprint, it is critical to be able to determine these areas. Spurious minutiae can be filtered out after applying the quality map. The algorithm is applied to the 3D fingerprint database and the result is very encouraging. To the best of our knowledge, this is the first minutiae extraction methodology proposed for 3D fingerprint scans

    Curvilinear Structure Enhancement in Biomedical Images

    Get PDF
    Curvilinear structures can appear in many different areas and at a variety of scales. They can be axons and dendrites in the brain, blood vessels in the fundus, streets, rivers or fractures in buildings, and others. So, it is essential to study curvilinear structures in many fields such as neuroscience, biology, and cartography regarding image processing. Image processing is an important field for the help to aid in biomedical imaging especially the diagnosing the disease. Image enhancement is the early step of image analysis. In this thesis, I focus on the research, development, implementation, and validation of 2D and 3D curvilinear structure enhancement methods, recently established. The proposed methods are based on phase congruency, mathematical morphology, and tensor representation concepts. First, I have introduced a 3D contrast independent phase congruency-based enhancement approach. The obtained results demonstrate the proposed approach is robust against the contrast variations in 3D biomedical images. Second, I have proposed a new mathematical morphology-based approach called the bowler-hat transform. In this approach, I have combined the mathematical morphology with a local tensor representation of curvilinear structures in images. The bowler-hat transform is shown to give better results than comparison methods on challenging data such as retinal/fundus images. The bowler-hat transform is shown to give better results than comparison methods on challenging data such as retinal/fundus images. Especially the proposed method is quite successful while enhancing of curvilinear structures at junctions. Finally, I have extended the bowler-hat approach to the 3D version to prove the applicability, reliability, and ability of it in 3D

    Numerical Insights for AAA Growth Understanding and Predicting: Morphological and Hemodynamic Risk Assessment Features and Transient Coherent Structures Uncovering

    Get PDF
    Les anévrismes de l'aorte abdominale (AAA) sont des dilatations localisées et fréquentes de l'aorte. En cas de rupture, seul un traitement immédiat peut prévenir la morbidité et la mortalité. Le diamètre maximal AAA (DmaxD_{max}) et la croissance sont les paramètres actuels pour évaluer le risque associé et planifier l'intervention, avec des seuils inférieurs pour les femmes. Cependant, ces critères ne sont pas personnalisés ; la rupture peut se produire à un diamètre inférieur et les patients vivre avec un AAA important. Si l'on sait que la maladie est associée à une modification de la morphologie et de la circulation sanguine, à un dépôt de thrombus intra-luminal et à des symptômes cliniques, les mécanismes de croissance ne sont pas encore entièrement compris. Dans cette étude longitudinale, une analyse morphologique et des simulations de flux sanguins sont effectuées et comparées aux sujets témoins chez 32 patients ayant reçu un diagnostic clinique d'AAA et au moins 3 tomodensitogrammes de suivi par patient. L'objectif est d'abord d'examiner quels paramètres stratifient les patients entre les groupes sains, à faible risque et à risque élevé. Les corrélations locales entre les paramètres hémodynamiques et la croissance de l'AAA sont également explorées, car la croissance hétérogène de l'AAA n'est actuellement pas comprise. Enfin, les paramètres composites sont construits à partir de données cliniques, morphologiques et hémodynamiques et de leur capacité à prédire si un patient sera soumis à un test de risque. La performance de ces modèles construits à partir de l'apprentissage supervisé est évaluée par les ROC AUC : ils sont respectivement de 0.73 ± 0.09, 0.93 ± 0.08 et 0.96 ± 0.10 . En incorporant tous les paramètres, on obtient une AUC de 0.98 ± 0.06. Pour mieux comprendre les interactions entre la croissance et la topologie de l'écoulement de l'AAA, on propose un worflow spécifique au patient pour calculer les exposants de Lyapunov en temps fini et extraire les structures lagrangiennes-cohérentes (SLC). Ce modèle de calcul a d'abord été comparé à l'imagerie par résonance magnétique (IRM) par contraste de phase 4-D chez 5 patients. Pour mieux comprendre l'impact de la topologie de l'écoulement et du transport sur la croissance de l'AAA, des SLC hyperboliques répulsives ont été calculées chez un patient au cours d'un suivi de 8 ans, avec 9 mesures morphologiques volumétriques de l'AAA par tomographie-angiographie. Les SLC ont défini les frontières du jet entrant dans l'AAA. Les domaines situés entre le SLC et le mur aortique ont été considérés comme des zones de stagnation. Leur évolution a été étudiée lors de la croissance de l'AAA. En plus des SLC hyperboliques (variétés attractives et répulsives) découvertes par FTLE, les SLC elliptiques ont également été considérées. Il s'agit de régions dominées par la rotation, ou tourbillons, qui sont de puissants outils pour comprendre les phénomènes de transport dans les AAA.Abdominal aortic aneurysms (AAA) are localized, commonly-occurring dilations of the aorta. In the event of rupture only immediate treatment can prevent morbidity and mortality. The AAA maximal diameter (DmaxD_{max}) and growth are the current metrics to evaluate the associated risk and plan intervention, with lower thresholds for women. However, these criteria lack patient specificity; rupture may occur at lower diameter and patients may live with large AAA. If the disease is known to be associated with altered morphology and blood flow, intra-luminal thrombus deposit and clinical symptoms, the growth mechanisms are yet to be fully understood. In this longitudinal study, morphological analysis and blood flow simulations for 32 patients with clinically diagnosed AAA and at least 3 follow-up CT-scans per patient, are performed and compared to control subjects. The aim is first to investigate which metrics stratify patients between healthy, low risk and high risk groups. Local correlations between hemodynamical metrics and AAA growth are also explored, as AAA heterogeneous growth is currently not understood. Finally, composite metrics are built from clinical, morphological, and hemodynamical data, and their ability to predict if a patient will become at risk tested. Performance of these models built from supervised learning is assessed by ROC AUCs: they are respectively, 0.73 ± 0.09, 0.93 ± 0.08 and 0.96 ± 0.10. Mixing all metrics, an AUC of 0.98 ± 0.06 is obtained. For further insights into AAA flow topology/growth interaction, a workout of patient-specific computational flow dynamics (CFD) is proposed to compute finite-time Lyapunov exponents and extract Lagrangian-coherent structures (LCS). This computational model was first compared with 4-D phase-contrast magnetic resonance imaging (MRI) on 5 patients. To better understand the impact of flow topology and transport on AAA growth, hyperbolic, repelling LCS were computed in 1 patient during 8-years follow-up, including 9 volumetric morphologic AAA measures by computed tomography-angiography (CTA). LCS defined barriers to Lagrangian jet cores entering AAA. Domains enclosed between LCS and the aortic wall were considered to be stagnation zones. Their evolution was studied during AAA growth. In addition to hyperbolic (attracting and repelling) LCS uncovered by FTLE, elliptic LCS were also considered. Those encloses rotation-dominated regions, or vortices, which are powerful tools to understand the flow transport in AAA
    corecore