62,591 research outputs found

    Revisiting Content Availability in Distributed Online Social Networks

    Get PDF
    Online Social Networks (OSN) are among the most popular applications in today's Internet. Decentralized online social networks (DOSNs), a special class of OSNs, promise better privacy and autonomy than traditional centralized OSNs. However, ensuring availability of content when the content owner is not online remains a major challenge. In this paper, we rely on the structure of the social graphs underlying DOSN for replication. In particular, we propose that friends, who are anyhow interested in the content, are used to replicate the users content. We study the availability of such natural replication schemes via both theoretical analysis as well as simulations based on data from OSN users. We find that the availability of the content increases drastically when compared to the online time of the user, e. g., by a factor of more than 2 for 90% of the users. Thus, with these simple schemes we provide a baseline for any more complicated content replication scheme.Comment: 11pages, 12 figures; Technical report at TU Berlin, Department of Electrical Engineering and Computer Science (ISSN 1436-9915

    CLOSER: A Collaborative Locality-aware Overlay SERvice

    Get PDF
    Current Peer-to-Peer (P2P) file sharing systems make use of a considerable percentage of Internet Service Providers (ISPs) bandwidth. This paper presents the Collaborative Locality-aware Overlay SERvice (CLOSER), an architecture that aims at lessening the usage of expensive international links by exploiting traffic locality (i.e., a resource is downloaded from the inside of the ISP whenever possible). The paper proves the effectiveness of CLOSER by analysis and simulation, also comparing this architecture with existing solutions for traffic locality in P2P systems. While savings on international links can be attractive for ISPs, it is necessary to offer some features that can be of interest for users to favor a wide adoption of the application. For this reason, CLOSER also introduces a privacy module that may arouse the users' interest and encourage them to switch to the new architectur

    Content-access QoS in peer-to-peer networks using a fast MDS erasure code

    Get PDF
    This paper describes an enhancement of content access Quality of Service in peer to peer (P2P) networks. The main idea is to use an erasure code to distribute the information over the peers. This distribution increases the users’ choice on disseminated encoded data and therefore statistically enhances the overall throughput of the transfer. A performance evaluation based on an original model using the results of a measurement campaign of sequential and parallel downloads in a real P2P network over Internet is presented. Based on a bandwidth distribution, statistical content-access QoS are guaranteed in function of both the content replication level in the network and the file dissemination strategies. A simple application in the context of media streaming is proposed. Finally, the constraints on the erasure code related to the proposed system are analysed and a new fast MDS erasure code is proposed, implemented and evaluated

    Analysing BitTorrent's seeding strategies

    Get PDF
    BitTorrent is a typical peer-to-peer (P2P) file distribution application that has gained tremendous popularity in recent years. A considerable amount of research exists regarding BitTorrent’s choking algorithm, which has proved to be effective in preventing freeriders. However, the effect of the seeding strategy on the resistance to freeriders in BitTorrent has been largely overlooked. In addition to this, a category of selfish leechers (termed exploiters), who leave the overlay immediately after completion, has never been taken into account in the previous research. In this paper two popular seeding strategies, the Original Seeding Strategy (OSS) and the Time- based Seeding Strategy (TSS), are chosen and we study via mathematical models and simulation their effects on freeriders and exploiters in BitTorrent networks. The mathematical model is verified and we discover that both freeriders and exploiters impact on system performance, despite the seeding strategy that is employed. However, a selfish-leechers threshold is identified; once the threshold is exceeded, we find that TSS outperforms OSS – that is, TSS reduces the negative impact of selfish lechers more effectively than OSS. Based on these results we discuss the choice of seeding strategy and speculate as to how more effective BitTorrent-based file distribu- tion applications can be built
    • 

    corecore