3,603 research outputs found

    Replica maintenance strategy for data grid

    Get PDF
    Data Grid is an infrastructure that manages huge amount of data files, and provides intensive computational resources across geographically distributed collaboration.Increasing the performance of such system can be achieved by improving the overall resource usage, which includes network and storage resources.Improving network resource usage is achieved by good utilization of network bandwidth that is considered as an important factor affecting job execution time.Meanwhile, improving storage resource usage is achieved by good utilization of storage space usage. Data replication is one of the methods used to improve the performance of data access in distributed systems by replicating multiple copies of data files in the distributed sites.Having distributed the replicas to various locations, they need to be monitored.As a result of dynamic changes in the data grid environment, some of the replicas need to be relocated.In this paper we proposed a maintenance replica placement strategy termed as Unwanted Replica Deletion Strategy (URDS) as a part of Replica maintenance service.The main purpose of the proposed strategy is to find the placement of unwanted replicas to be deleted.OptorSim is used to evaluate the performance of the proposed strategy. The simulation results show that URDS requires less execution time and consumes less network usage and has a best utilization of storage space usage compared to existing approaches

    A Prediction-Based Replication Algorithm for Improving Data Availability in Frid Environment

    Get PDF
    Data replication is a key optimization technique for reducing access latency and managing large data by storing replica of data in a wisely manner. In this paper, we propose a data replication algorithm, called the Prediction-Base Dynamic Replication (PBDR) algorithm that improves file access time. Restricted by the storage capacity, it is essential to design an effective strategy for the replication replacement task. PBDR deletes files by considering four important factors: the number of requests for the replica in the future times, availability, the size of the replica and the last time the replica was requested. Also, it can minimize access latency by selecting the best replica when various sites hold replicas of datasets. The algorithm is simulated using a data grid simulator, OptorSim, developed by European Data Grid projects. The experiment results show that PBDR strategy gives better performance compared to the other algorithms and prevents unnecessary creation of replica which leads to efficient storage usage

    Replica Creation Algorithm for Data Grids

    Get PDF
    Data grid system is a data management infrastructure that facilitates reliable access and sharing of large amount of data, storage resources, and data transfer services that can be scaled across distributed locations. This thesis presents a new replication algorithm that improves data access performance in data grids by distributing relevant data copies around the grid. The new Data Replica Creation Algorithm (DRCM) improves performance of data grid systems by reducing job execution time and making the best use of data grid resources (network bandwidth and storage space). Current algorithms focus on number of accesses in deciding which file to replicate and where to place them, which ignores resources’ capabilities. DRCM differs by considering both user and resource perspectives; strategically placing replicas at locations that provide the lowest transfer cost. The proposed algorithm uses three strategies: Replica Creation and Deletion Strategy (RCDS), Replica Placement Strategy (RPS), and Replica Replacement Strategy (RRS). DRCM was evaluated using network simulation (OptorSim) based on selected performance metrics (mean job execution time, efficient network usage, average storage usage, and computing element usage), scenarios, and topologies. Results revealed better job execution time with lower resource consumption than existing approaches. This research contributes replication strategies embodied in one algorithm that enhances data grid performance, capable of making a decision on creating or deleting more than one file during same decision. Furthermore, dependency-level-between-files criterion was utilized and integrated with the exponential growth/decay model to give an accurate file evaluation

    DALiuGE: A Graph Execution Framework for Harnessing the Astronomical Data Deluge

    Full text link
    The Data Activated Liu Graph Engine - DALiuGE - is an execution framework for processing large astronomical datasets at a scale required by the Square Kilometre Array Phase 1 (SKA1). It includes an interface for expressing complex data reduction pipelines consisting of both data sets and algorithmic components and an implementation run-time to execute such pipelines on distributed resources. By mapping the logical view of a pipeline to its physical realisation, DALiuGE separates the concerns of multiple stakeholders, allowing them to collectively optimise large-scale data processing solutions in a coherent manner. The execution in DALiuGE is data-activated, where each individual data item autonomously triggers the processing on itself. Such decentralisation also makes the execution framework very scalable and flexible, supporting pipeline sizes ranging from less than ten tasks running on a laptop to tens of millions of concurrent tasks on the second fastest supercomputer in the world. DALiuGE has been used in production for reducing interferometry data sets from the Karl E. Jansky Very Large Array and the Mingantu Ultrawide Spectral Radioheliograph; and is being developed as the execution framework prototype for the Science Data Processor (SDP) consortium of the Square Kilometre Array (SKA) telescope. This paper presents a technical overview of DALiuGE and discusses case studies from the CHILES and MUSER projects that use DALiuGE to execute production pipelines. In a companion paper, we provide in-depth analysis of DALiuGE's scalability to very large numbers of tasks on two supercomputing facilities.Comment: 31 pages, 12 figures, currently under review by Astronomy and Computin

    Design and Implementation of an Extensible Variable Resolution Bathymetric Estimator

    Get PDF
    For grid-based bathymetric estimation techniques, determining the right resolution at which to work is essential. Appropriate grid resolution can be related, roughly, to data density and thence to sonar characteristics, survey methodology, and depth. It is therefore variable in almost all survey scenarios, and methods of addressing this problem can have enormous impact on the correctness and efficiency of computational schemes of this kind. This paper describes the design and implementation of a bathymetric depth estimation algorithm that attempts to address this problem by combining the computational efficiency of locally regular grids with piecewise-variable estimation resolution to provide a single logical data structure and associated algorithms that can adjust to local data conditions, change resolution where required to best support the data, and operate over essentially arbitrarily large areas as a single unit. The algorithm, which is in part a development of CUBE, is modular and extensible, and is structured as a client-server application to support different implementation modalities. The algorithm is called “CUBE with Hierarchical Resolution Techniques”, or CHRT

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine EinfĂŒhrung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. Anschließend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing

    Simultaneous Scheduling of Replication and Computation for Data-Intensive Applications on the Grid

    Get PDF
    One of the first motivations of using grids comes from applications managing large data sets like for example in High Energy Physic or Life Sciences. To improve the global throughput of software environments, replicas are usually put at wisely selected sites. Moreover, computation requests have to be scheduled among the available resources. To get the best performance, scheduling and data replication have to be tightly coupled which is not always the case in existing approaches. This paper presents an algorithm that combines data management and scheduling at the same time using a steady-state approach. Our theoretical results are validated using simulation and logs from a large life science application (ACI GRID GriPPS).L'une des principales motivations pour utiliser les grilles de calcul vient des applications utilisant de larges ensembles de donnĂ©es comme, par exemple, en Physique des Hautes Energies ou en Science de la Vie. Pour amĂ©liorer le rendement global des environnements logiciels utilisĂ©es pour porter ces applications sur les grilles, des rĂ©plicats des donnĂ©es sont dĂ©posĂ©es sur diffĂ©rents sites sĂ©lectionnĂ©s. De plus es requĂȘtes de calcul doivent ĂȘtre ordonnancĂ©es en tenant compte des ressources disponibles. Pour obtenir de meilleures performances, l'ordonnancement des requĂȘtes et la rĂ©plication des donnĂ©es doivent ĂȘtre Ă©troitement couplĂ©s ce qui n'est gĂ©nĂ©ralement pas le cas dans les approches existantes. Cet article prĂ©sente un algorithme qui combine la gestion des donnĂ©es et l'ordonnancement en utilisant une approche en rĂ©gime permanent. Nos rĂ©sultats thĂ©oriques sont validĂ©s par simulations et par l'utilisation des traces d'un serveur de calcul d'application de Sciences de la Vie(ACIGRIDGRIPPS)

    Semantic-Based, Scalable, Decentralized and Dynamic Resource Discovery for Internet-Based Distributed System

    Get PDF
    Resource Discovery (RD) is a key issue in Internet-based distributed sytems such as grid. RD is about locating an appropriate resource/service type that matches the user's application requirements. This is very important, as resource reservation and task scheduling are based on it. Unfortunately, RD in grid is very challenging as resources and users are distributed, resources are heterogeneous in their platforms, status of the resources is dynamic (resources can join or leave the system without any prior notice) and most recently the introduction of a new type of grid called intergrid (grid of grids) with the use of multi middlewares. Such situation requires an RD system that has rich interoperability, scalability, decentralization and dynamism features. However, existing grid RD systems have difficulties to attain these features. Not only that, they lack the review and evaluation studies, which may highlight the gap in achieving the required features. Therefore, this work discusses the problem associated with intergrid RD from two perspectives. First, reviewing and classifying the current grid RD systems in such a way that may be useful for discussing and comparing them. Second, propose a novel RD framework that has the aforementioned required RD features. In the former, we mainly focus on the studies that aim to achieve interoperability in the first place, which are known as RD systems that use semantic information (semantic technology). In particular, we classify such systems based on their qualitative use of the semantic information. We evaluate the classified studies based on their degree of accomplishment of interoperability and the other RD requirements, and draw the future research direction of this field. Meanwhile in the latter, we name the new framework as semantic-based scalable decentralized dynamic RD. The framework further contains two main components which are service description, and service registration and discovery models. The earlier consists of a set of ontologies and services. Ontologies are used as a data model for service description, whereas the services are to accomplish the description process. The service registration is also based on ontology, where nodes of the service (service providers) are classified to some classes according to the ontology concepts, which means each class represents a concept in the ontology. Each class has a head, which is elected among its own class I nodes/members. Head plays the role of a registry in its class and communicates with I the other heads of the classes in a peer to peer manner during the discovery process. We further introduce two intelligent agents to automate the discovery process which are Request Agent (RA) and Description Agent (DA). Eaclj. node is supposed to have both agents. DA describes the service capabilities based on the ontology, and RA I carries the service requests based on the ontology as well. We design a service search I algorithm for the RA that starts the service look up from the class of request origin first, then to the other classes. We finally evaluate the performance of our framework ~ith extensive simulation experiments, the result of which confirms the effectiveness of the proposed system in satisfying the required RD features (interoperability, scalability, decentralization and dynamism). In short, our main contributions are outlined new key taxonomy for the semantic-based grid RD studies; an interoperable semantic description RD component model for intergrid services metadata representation; a semantic distributed registry architecture for indexing service metadata; and an agent-qased service search and selection algorithm. Vll

    Self-management for large-scale distributed systems

    Get PDF
    Autonomic computing aims at making computing systems self-managing by using autonomic managers in order to reduce obstacles caused by management complexity. This thesis presents results of research on self-management for large-scale distributed systems. This research was motivated by the increasing complexity of computing systems and their management. In the first part, we present our platform, called Niche, for programming self-managing component-based distributed applications. In our work on Niche, we have faced and addressed the following four challenges in achieving self-management in a dynamic environment characterized by volatile resources and high churn: resource discovery, robust and efficient sensing and actuation, management bottleneck, and scale. We present results of our research on addressing the above challenges. Niche implements the autonomic computing architecture, proposed by IBM, in a fully decentralized way. Niche supports a network-transparent view of the system architecture simplifying the design of distributed self-management. Niche provides a concise and expressive API for self-management. The implementation of the platform relies on the scalability and robustness of structured overlay networks. We proceed by presenting a methodology for designing the management part of a distributed self-managing application. We define design steps that include partitioning of management functions and orchestration of multiple autonomic managers. In the second part, we discuss robustness of management and data consistency, which are necessary in a distributed system. Dealing with the effect of churn on management increases the complexity of the management logic and thus makes its development time consuming and error prone. We propose the abstraction of Robust Management Elements, which are able to heal themselves under continuous churn. Our approach is based on replicating a management element using finite state machine replication with a reconfigurable replica set. Our algorithm automates the reconfiguration (migration) of the replica set in order to tolerate continuous churn. For data consistency, we propose a majority-based distributed key-value store supporting multiple consistency levels that is based on a peer-to-peer network. The store enables the tradeoff between high availability and data consistency. Using majority allows avoiding potential drawbacks of a master-based consistency control, namely, a single-point of failure and a potential performance bottleneck. In the third part, we investigate self-management for Cloud-based storage systems with the focus on elasticity control using elements of control theory and machine learning. We have conducted research on a number of different designs of an elasticity controller, including a State-Space feedback controller and a controller that combines feedback and feedforward control. We describe our experience in designing an elasticity controller for a Cloud-based key-value store using state-space model that enables to trade-off performance for cost. We describe the steps in designing an elasticity controller. We continue by presenting the design and evaluation of ElastMan, an elasticity controller for Cloud-based elastic key-value stores that combines feedforward and feedback control
    • 

    corecore