110 research outputs found

    Exploiting Human Factors in User Authentication

    Get PDF
    Our overarching issue in security is the human factor—and dealing with it is perhaps one of the biggest challenges we face today. Human factor is often described as the weakest part of a security system and users are often described as the weakest link in the security chain. In this thesis, we focus on two problems which are caused by human factors in user authentication and propose respective solutions. a) Secrecy information inference attack—publicly available information can be used to infer some secrecy information about the user. b) Coercion attack—where an attacker forces a user to handover his/her secret information such as account details and password. In the secrecy information inference attack, an attacker can use publicly available data to infer secrecy information about a victim. We should be prudent in choosing any information as secrecy information in user authentication. In this work, we exploit public data extracted from Facebook to infer users' interests. Such interests can also found on their profile pages but such pages are often private. Our experiments conducted on over more than 34, 000 public pages collected from Facebook show that our inference technique can infer interests which are often hidden by users with moderate accuracy. Using the inferred interests, we also demonstrate a secrecy information inference attack to break a preference based backup authentication system BlueMoon™. To mitigate the effect of secrecy information inference attack, we propose a new authentication mechanism based on user's cellphone usage data which is often private. The system generates memorable and dynamic fingerprints which can be used to create authentication challenges. In particular, in this work, we explore if the generated behavioral fingerprints are memorable enough to be remembered by end users to be used for authentication credentials. We demonstrate the application of memorable fingerprints by designing an authentication application on top of it. We conducted an extensive user study that involved collecting about one month of continuous usage data from 58 Symbian and Android smartphone users. Results show that the fingerprints generated are remembered by the user to some extent and that they were moderately secure against attacks even by family members and close friends. The second problem which we focus in this thesis is human vulnerability to coercion attacks. In such attacks, the user is forcefully asked by an attacker to reveal the secret/key to gain access to the system. Most authentication mechanisms today are vulnerable to coercion attacks. We present a novel approach in generating cryptographic keys to fight against coercion attacks. Our technique incorporates a measure of user's emotional status using skin conductance (which changes when the user is under coercion) into the key generation process. A preliminary user study with 39 subjects was conducted which shows that our approach has moderate false acceptance and false rejection rates. Furthermore, to meet the demand of scalability and usability, many real-world authentication systems have adopted the idea of responsibility shifting, where a user's responsibility of authentication is shifted to another entity, usually in case of failure of the primary authentication method. In a responsibility shifting authentication scenario, a human helper who is involved in regaining access, is vulnerable to coercion attacks. In this work, we report our user study on 29 participants which investigates the helper's emotional status when being coerced to assist in an attack. Results show that the coercion causes involuntary skin conductance fluctuation on the helper, which indicates that he/she is nervous and stressed. The results from the two studies show that the skin conductance is a viable approach to fight against coercion attacks in user authentication

    Coercion Resistance in Authentication Responsibility Shifting

    Get PDF

    The Influence of Video Games on Adolescent Brain Activity

    Get PDF
    The current study examined electrical brain activation in adolescent participants playing three different video games. Forty-five school aged children (M=14.3 years, SD=1.5) were randomly assigned to play either a violent game, non-violent game, or a non-violent game specifically designed to train the brain. Electroencephalography (EEG) was recorded during video game play. Results revealed an asymmetric right hemisphere activation in the alpha band for participants in violent game group, while those in the non-violent groups exhibited left hemispheric activation. Greater right activation in emotion literature denotes signs of withdrawal or avoidance from undesired stimulus. Implications of this finding as well as other findings related to electrical brain activation during video game play is discussed further in the manuscript

    Authentication and Data Protection under Strong Adversarial Model

    Get PDF
    We are interested in addressing a series of existing and plausible threats to cybersecurity where the adversary possesses unconventional attack capabilities. Such unconventionality includes, in our exploration but not limited to, crowd-sourcing, physical/juridical coercion, substantial (but bounded) computational resources, malicious insiders, etc. Our studies show that unconventional adversaries can be counteracted with a special anchor of trust and/or a paradigm shift on a case-specific basis. Complementing cryptography, hardware security primitives are the last defense in the face of co-located (physical) and privileged (software) adversaries, hence serving as the special trust anchor. Examples of hardware primitives are architecture-shipped features (e.g., with CPU or chipsets), security chips or tokens, and certain features on peripheral/storage devices. We also propose changes of paradigm in conjunction with hardware primitives, such as containing attacks instead of counteracting, pretended compliance, and immunization instead of detection/prevention. In this thesis, we demonstrate how our philosophy is applied to cope with several exemplary scenarios of unconventional threats, and elaborate on the prototype systems we have implemented. Specifically, Gracewipe is designed for stealthy and verifiable secure deletion of on-disk user secrets under coercion; Hypnoguard protects in-RAM data when a computer is in sleep (ACPI S3) in case of various memory/guessing attacks; Uvauth mitigates large-scale human-assisted guessing attacks by receiving all login attempts in an indistinguishable manner, i.e., correct credentials in a legitimate session and incorrect ones in a plausible fake session; Inuksuk is proposed to protect user files against ransomware or other authorized tampering. It augments the hardware access control on self-encrypting drives with trusted execution to achieve data immunization. We have also extended the Gracewipe scenario to a network-based enterprise environment, aiming to address slightly different threats, e.g., malicious insiders. We believe the high-level methodology of these research topics can contribute to advancing the security research under strong adversarial assumptions, and the promotion of software-hardware orchestration in protecting execution integrity therein

    2018 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Twelfth Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1012/thumbnail.jp

    Law and Policy for the Quantum Age

    Get PDF
    Law and Policy for the Quantum Age is for readers interested in the political and business strategies underlying quantum sensing, computing, and communication. This work explains how these quantum technologies work, future national defense and legal landscapes for nations interested in strategic advantage, and paths to profit for companies

    2018 - The Twenty-third Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-third Annual Symposium of Student Scholars, held on April 19, 2018. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1020/thumbnail.jp
    • …
    corecore