36,580 research outputs found

    Spatially partitioned embedded Runge-Kutta Methods

    Get PDF
    We study spatially partitioned embedded Runge–Kutta (SPERK) schemes for partial differential equations (PDEs), in which each of the component schemes is applied over a different part of the spatial domain. Such methods may be convenient for problems in which the smoothness of the solution or the magnitudes of the PDE coefficients vary strongly in space. We focus on embedded partitioned methods as they offer greater efficiency and avoid the order reduction that may occur in non-embedded schemes. We demonstrate that the lack of conservation in partitioned schemes can lead to non-physical effects and propose conservative additive schemes based on partitioning the fluxes rather than the ordinary differential equations. A variety of SPERK schemes are presented, including an embedded pair suitable for the time evolution of fifth-order weighted non-oscillatory (WENO) spatial discretizations. Numerical experiments are provided to support the theory

    Runge-Kutta Methods for Solving Ordinary and Delay Differential Equations

    Get PDF
    An introduction to Runge-Kutta methods for the solution of ordinary differential equations (ODEs) is introduced. The technique of using Singly Diagonally Implicit Runge-Kutta (SDIRK) method for the integration of stiff and non-stiff ODEs has been widely accepted, this is because SDIRK method is computationally efficient and stiffly stable. Consequently embedded SDIRK method of fourth-order six stage in fifth-order seven stage which has the property that the first row of the coefficient matrix is equal to zero and the last row of the coefficient matrix is equal to the vector output value is constructed. The stability region of the method when applied to linear ODE is given. Numerical results when stiff and non-stiff first order ODEs are solved using the method are tabulated and compared with the method in current use. Introduction to delay differential equations (DDEs) and the areas where they arise are given. A brief discussion on Runge-Kutta method when adapted to delay differential equation is introduced. SDIRK method which has been derived previously is used to solve delay differential equations; the delay term is approximated using divided difference interpolation. Numerical results are tabulated and compared with the existing methods. The stability aspects of SDIRK method when applied to DDEs using Lagrange interpolation are investigated and the region of stability is presented. Runge-Kutta-Nystróm (RKN) method for the solution of special second-order ordinary differential equations of the form ),(yxfy=′′ is discussed. Consequently, Singly Diagonally Implicit Runge-Kutta Nystróm (SDIRKN) method of third-order three stage embedded in fourth-order four stage with small error coefficients is constructed. The stability region of the new method is presented. The method is then used to solve both stiff and non-stiff special second order ODEs and the numerical results suggest that the new method is more efficient compared to the current methods in use. Finally, introduction to general Runge-Kutta-Nystrom (RKNG) method for the solution of second-order ordinary differential equations of the form ),,(yyxfy′=′′ is given. A new embedded Singly Diagonally Implicit Runge-Kutta-Nystróm General (SDIRKNG) method of third-order four stage embedded in fourth-order five stage is derived. Analysis on the stability aspects of the new method is given and numerical results when the method is used to solve both stiff and non-stiff second order ODEs are presented. The results indicate the superiority of the new method compared to the existing method

    Numerical Solution of Ordinary and Delay Differential Equations by Runge-Kutta Type Methods

    Get PDF
    Runge-Kutta methods for the solution of systems of ordinary differential equations (ODEs) are described. To overcome the difficulty in implementing fully implicit Runge-Kutta method and to avoid the limitations of explicit Runge-Kutta method, we resort to Singly Diagonally Implicit Runge-Kutta (SDIRK) method, which is computationally efficient and stiffly stable. Consequently, embedded SDIRK methods of fourth order five stages in fifth order six stages are constructed. Their regions of stability are presented and numerical results of the methods are compared with the existing methods. Stiff systems of ODEs are solved using implicit formulae and require the use of Newton-like iteration, which needs a lot of computational effort. If the systems can be partitioned dynamically into stiff and nonstiff subsystems then a more effective code can be developed. Hence, partitioning strategies are discussed in detail and numerical results based on two techniques to detect stiffness using SDIRK methods are compared. A brief introduction to delay differential equations (DDEs) is given. The stability properties of SDIRK methods, when applied to DDEs, using Lagrange interpolation to evaluate the delay term, are investigated. Finally, partitioning strategies for ODEs are adapted to DDEs and numerical results based on two partitioning techniques, interval wise partitioning and componentwise partitioning are tabulated and compared

    Computer solution of non-linear integration formula for solving initial value problems

    Get PDF
    This thesis is concerned with the numerical solutions of initial value problems with ordinary differential equations and covers single step integration methods. focus is to study the numerical the various aspects of Specifically, its main methods of non-linear integration formula with a variety of means based on the Contraharmonic mean (C˳M) (Evans and Yaakub [1995]), the Centroidal mean (C˳M) (Yaakub and Evans [1995]) and the Root-Mean-Square (RMS) (Yaakub and Evans [1993]) for solving initial value problems. the applications of the second It includes a study of order C˳M method for parallel implementation of extrapolation methods for ordinary differential equations with the ExDaTa schedule by Bahoshy [1992]. Another important topic presented in this thesis is that a fifth order five-stage explicit Runge Kutta method or weighted Runge Kutta formula [Evans and Yaakub [1996]) exists which is contrary to Butcher [1987] and the theorem in Lambert ([1991] ,pp 181). The thesis is organized as follows. An introduction to initial value problems in ordinary differential equations and parallel computers and software in Chapter 1, the basic preliminaries and fundamental concepts in mathematics, an algebraic manipulation package, e.g., Mathematica and basic parallel processing techniques are discussed in Chapter 2. Following in Chapter 3 is a survey of single step methods to solve ordinary differential equations. In this chapter, several single step methods including the Taylor series method, Runge Kutta method and a linear multistep method for non-stiff and stiff problems are also considered. Chapter 4 gives a new Runge Kutta formula for solving initial value problems using the Contraharmonic mean (C˳M), the Centroidal mean (C˳M) and the Root-MeanSquare (RMS). An error and stability analysis for these variety of means and numerical examples are also presented. Chapter 5 discusses the parallel implementation on the Sequent 8000 parallel computer of the Runge-Kutta contraharmonic mean (C˳M) method with extrapolation procedures using explicit assignment scheduling Kutta RK(4, 4) method (EXDATA) strategies. A is introduced and the data task new Rungetheory and analysis of its properties are investigated and compared with the more popular RKF(4,5) method, are given in Chapter 6. Chapter 7 presents a new integration method with error control for the solution of a special class of second order ODEs. In Chapter 8, a new weighted Runge-Kutta fifth order method with 5 stages is introduced. By comparison with the currently recommended RK4 ( 5) Merson and RK5(6) Nystrom methods, the new method gives improved results. Chapter 9 proposes a new fifth order Runge-Kutta type method for solving oscillatory problems by the use of trigonometric polynomial interpolation which extends the earlier work of Gautschi [1961]. An analysis of the convergence and stability of the new method is given with comparison with the standard Runge-Kutta methods. Finally, Chapter 10 summarises and presents conclusions on the topics discussed throughout the thesis

    Optimization of Nordsieck's Method for the Numerical Integration of Ordinary Differential Equations

    Get PDF
    Stability and accuracy of Nordsieck's integration method can be improved by choosing the zero-positions of the extraneous roots of the characteristic equation in a suitable way. Optimum zero-positions have been found by minimizing the lower bound of the interval of absolute stability and the coefficient of the truncation error. Various properties of the improved methods have been analysed, such as the behaviour of the high-order terms, the equivalence with multistep methods and the damping of perturbations

    Another approach to Runge-Kutta methods

    Get PDF
    The condition equations are derived by the introduction of a system of equivalent differential equations, avoiding the usual formalism with trees and elementary differentials. Solutions to the condition equations are found by direct optimization, avoiding the necessity to introduce simplifying assumptions upon the Runge-Kutta coefficients. More favourable coefficients, in view of rounding errors, are found
    corecore