14 research outputs found

    Contract Aware Components, 10 years after

    Get PDF
    The notion of contract aware components has been published roughly ten years ago and is now becoming mainstream in several fields where the usage of software components is seen as critical. The goal of this paper is to survey domains such as Embedded Systems or Service Oriented Architecture where the notion of contract aware components has been influential. For each of these domains we briefly describe what has been done with this idea and we discuss the remaining challenges.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    A compositional method for the synthesis of asynchronous communication mechanisms

    Get PDF
    Asynchronous data communication mechanisms (ACMs) have been extensively studied as data connectors between independently timed concurrent processes. In previous work, an automatic ACM synthesis method based on the generation of the reachability graph and the theory of regions was proposed. In this paper, we propose a new synthesis method based on the composition of Petri net modules, avoiding the exploration of the reachability graph. The behavior of ACMs is formally defined and correctness properties are specified in CTL. Model checking is used to verify the correctness of the Petri net models. The algorithms to generate the Petri net models are presented. Finally, a method to automatically generate C++ source code from the Petri net model is described.Peer ReviewedPostprint (author's final draft

    Compilation de systèmes temps réel

    Get PDF
    I introduce and advocate for the concept of Real-Time Systems Compilation. By analogy with classical compilation, real-time systems compilation consists in the fully automatic construction of running, correct-by-construction implementations from functional and non-functional specifications of embedded control systems. Like in a classical compiler, the whole process must be fast (thus enabling a trial-and-error design style) and produce reasonably efficient code. This requires the use of fast heuristics, and the use of fine-grain platform and application models. Unlike a classical compiler, a real-time systems compiler must take into account non-functional properties of a system and ensure the respect of non-functional requirements (in addition to functional correctness). I also present Lopht, a real-time systems compiler for statically-scheduled real-time systems we built by combining techniques and concepts from real-time scheduling, compilation, and synchronous languages

    From Dataflow Specification to Multiprocessor Partitioned Time-triggered Real-time Implementation *

    Get PDF
    International audienceOur objective is to facilitate the development of complex time-triggered systems by automating the allocation and scheduling steps. We show that full automation is possible while taking into account the elements of complexity needed by a complex embedded control system. More precisely, we consider deterministic functional specifications provided (as often in an industrial setting) by means of synchronous data-flow models with multiple modes and multiple relative periods. We first extend this functional model with an original real-time characterization that takes advantage of our time-triggered framework to provide a simpler representation of complex end-to-end flow requirements. We also extend our specifications with additional non-functional properties specifying partitioning, allocation , and preemptability constraints. Then, weprovide novel algorithms for the off-line scheduling of these extended specifications onto partitioned time-triggered architectures Ă  la ARINC 653. The main originality of our work is that it takes into account at the same time multiple complexity elements: various types of non-functional properties (real-time, partitioning, allocation, preemptability) and functional specifications with conditional execution and multiple modes. Allocation of time slots/windows to partitions can be fullyor partially provided, or synthesized by our tool. Our algorithms allow the automatic allocation and scheduling onto multi-processor (distributed) sys-tems with a global time base, taking into account communication costs. We demonstrate our technique on a model of space flight software systemwith strong real-time determinism requirements

    Behavioural semantics for asynchronous components

    Get PDF
    International audienceSoftware components are a valuable programming abstraction that enables a compositional design of complex applications. In distributed systems, components can also be used to provide an abstraction of locations: each component is a unit of deployment that can be placed on a different machine. In this article, we consider this kind of distributed components that are additionally loosely coupled and communicate by asynchronous invocations. Components also provide a convenient abstraction for verifying the correct behaviour of systems: they provide structuring entities easing the correctness verification. This article provides a formal background for the generation of behavioural semantics for asynchronous components. It expresses the semantics of hierarchical distributed components communicating asynchronously by requests, futures, and replies; this semantics is provided using the pNet intermediate language. This article both demonstrates the expressiveness of the pNet model and formally specifies the complete process of the generation of a behavioural model for a distributed component system. The purpose of our be-havioural semantics is to allow for verification both by finite instantiation and model-checking, and by techniques for infinite systems

    The DS-Pnet modeling formalism for cyber-physical system development

    Get PDF
    This work presents the DS-Pnet modeling formalism (Dataflow, Signals and Petri nets), designed for the development of cyber-physical systems, combining the characteristics of Petri nets and dataflows to support the modeling of mixed systems containing both reactive parts and data processing operations. Inheriting the features of the parent IOPT Petri net class, including an external interface composed of input and output signals and events, the addition of dataflow operations brings enhanced modeling capabilities to specify mathematical data transformations and graphically express the dependencies between signals. Data-centric systems, that do not require reactive controllers, are designed using pure dataflow models. Component based model composition enables reusing existing components, create libraries of previously tested components and hierarchically decompose complex systems into smaller sub-systems. A precise execution semantics was defined, considering the relationship between dataflow and Petri net nodes, providing an abstraction to define the interface between reactive controllers and input and output signals, including analog sensors and actuators. The new formalism is supported by the IOPT-Flow Web based tool framework, offering tools to design and edit models, simulate model execution on the Web browser, plus model-checking and software/hardware automatic code generation tools to implement controllers running on embedded devices (C,VHDL and JavaScript). A new communication protocol was created to permit the automatic implementation of distributed cyber-physical systems composed of networks of remote components communicating over the Internet. The editor tool connects directly to remote embedded devices running DS-Pnet models and may import remote components into new models, contributing to simplify the creation of distributed cyber-physical applications, where the communication between distributed components is specified just by drawing arcs. Several application examples were designed to validate the proposed formalism and the associated framework, ranging from hardware solutions, industrial applications to distributed software applications

    Applying Mutable Object Snapshots to a High-level Object-Oriented Language

    Get PDF
    Software Engineers are familiar with mutable and immutable object state. Mutable objects shared across modules may lead to unexpected results as changes to the object in one module are visible to other modules sharing the object. When provided a mutable object as input in Java, it is common practice to defensively create a new private copy of the object bearing the same state via cloning, serializing/de-serializing, specialized object constructor, or third-party library. No universal approach exists for all scenarios and each common solution has well-known problems. This research explores the applicability of concepts within the Computer Engineering storage field related to snapshots. This exploration results in a simplified method of memory snapshotting implemented within OpenJDK 10. A novel runtime-managed method is proposed for declaring intent for object state to be unshared within the method signature. Preliminary experiments evaluate the attributes of this approach. A path for future research is proposed, including differential snapshots, alternative block sizes, improving performance, and exploring a tree of snapshots as a foundation to reason about changes to object state over time

    Second Generation General System Theory: Perspectives in Philosophy and Approaches in Complex Systems

    Get PDF
    Following the classical work of Norbert Wiener, Ross Ashby, Ludwig von Bertalanffy and many others, the concept of System has been elaborated in different disciplinary fields, allowing interdisciplinary approaches in areas such as Physics, Biology, Chemistry, Cognitive Science, Economics, Engineering, Social Sciences, Mathematics, Medicine, Artificial Intelligence, and Philosophy. The new challenge of Complexity and Emergence has made the concept of System even more relevant to the study of problems with high contextuality. This Special Issue focuses on the nature of new problems arising from the study and modelling of complexity, their eventual common aspects, properties and approaches—already partially considered by different disciplines—as well as focusing on new, possibly unitary, theoretical frameworks. This Special Issue aims to introduce fresh impetus into systems research when the possible detection and correction of mistakes require the development of new knowledge. This book contains contributions presenting new approaches and results, problems and proposals. The context is an interdisciplinary framework dealing, in order, with electronic engineering problems; the problem of the observer; transdisciplinarity; problems of organised complexity; theoretical incompleteness; design of digital systems in a user-centred way; reaction networks as a framework for systems modelling; emergence of a stable system in reaction networks; emergence at the fundamental systems level; behavioural realization of memoryless functions
    corecore