130 research outputs found

    Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks

    Get PDF
    Transferability captures the ability of an attack against a machine-learning model to be effective against a different, potentially unknown, model. Empirical evidence for transferability has been shown in previous work, but the underlying reasons why an attack transfers or not are not yet well understood. In this paper, we present a comprehensive analysis aimed to investigate the transferability of both test-time evasion and training-time poisoning attacks. We provide a unifying optimization framework for evasion and poisoning attacks, and a formal definition of transferability of such attacks. We highlight two main factors contributing to attack transferability: the intrinsic adversarial vulnerability of the target model, and the complexity of the surrogate model used to optimize the attack. Based on these insights, we define three metrics that impact an attack's transferability. Interestingly, our results derived from theoretical analysis hold for both evasion and poisoning attacks, and are confirmed experimentally using a wide range of linear and non-linear classifiers and datasets

    CBSeq: A Channel-level Behavior Sequence For Encrypted Malware Traffic Detection

    Full text link
    Machine learning and neural networks have become increasingly popular solutions for encrypted malware traffic detection. They mine and learn complex traffic patterns, enabling detection by fitting boundaries between malware traffic and benign traffic. Compared with signature-based methods, they have higher scalability and flexibility. However, affected by the frequent variants and updates of malware, current methods suffer from a high false positive rate and do not work well for unknown malware traffic detection. It remains a critical task to achieve effective malware traffic detection. In this paper, we introduce CBSeq to address the above problems. CBSeq is a method that constructs a stable traffic representation, behavior sequence, to characterize attacking intent and achieve malware traffic detection. We novelly propose the channels with similar behavior as the detection object and extract side-channel content to construct behavior sequence. Unlike benign activities, the behavior sequences of malware and its variant's traffic exhibit solid internal correlations. Moreover, we design the MSFormer, a powerful Transformer-based multi-sequence fusion classifier. It captures the internal similarity of behavior sequence, thereby distinguishing malware traffic from benign traffic. Our evaluations demonstrate that CBSeq performs effectively in various known malware traffic detection and exhibits superior performance in unknown malware traffic detection, outperforming state-of-the-art methods.Comment: Submitted to IEEE TIF

    On Practical Aspects of Aggregation Defenses against Data Poisoning Attacks

    Full text link
    The increasing access to data poses both opportunities and risks in deep learning, as one can manipulate the behaviors of deep learning models with malicious training samples. Such attacks are known as data poisoning. Recent advances in defense strategies against data poisoning have highlighted the effectiveness of aggregation schemes in achieving state-of-the-art results in certified poisoning robustness. However, the practical implications of these approaches remain unclear. Here we focus on Deep Partition Aggregation, a representative aggregation defense, and assess its practical aspects, including efficiency, performance, and robustness. For evaluations, we use ImageNet resized to a resolution of 64 by 64 to enable evaluations at a larger scale than previous ones. Firstly, we demonstrate a simple yet practical approach to scaling base models, which improves the efficiency of training and inference for aggregation defenses. Secondly, we provide empirical evidence supporting the data-to-complexity ratio, i.e. the ratio between the data set size and sample complexity, as a practical estimation of the maximum number of base models that can be deployed while preserving accuracy. Last but not least, we point out how aggregation defenses boost poisoning robustness empirically through the poisoning overfitting phenomenon, which is the key underlying mechanism for the empirical poisoning robustness of aggregations. Overall, our findings provide valuable insights for practical implementations of aggregation defenses to mitigate the threat of data poisoning.Comment: 15 page

    ARTIFICIAL IMMUNE SYSTEMS FOR INFORMATION FILTERING: FOCUSING ON PROFILE ADAPTATION

    Get PDF
    The human immune system has characteristics such as self-organisation, robustness and adaptivity that may be useful in the development of adaptive systems. One suitable application area for adaptive systems is Information Filtering (IF). Within the context of IF, learning and adapting user profiles is an important research area. In an individual profile, an IF system has to rely on the ability of the user profile to maintain a satisfactory level of filtering accuracy for as long as it is being used. This thesis explores a possible way to enable Artificial Immune Systems (AIS) to filter information in the context of profile adaptation. Previous work has investigated this issue from the perspective of self-organisation based on Autopoetic Theory. In contrast, this current work approaches the problem from the perspective of diversity inspired by the concept of dynamic clonal selection and gene library to maintain sufficient diversity. An immune inspired IF for profile adaptation is proposed and developed. This algorithm is demonstrated to work in detecting relevant documents by using a single profile to recognize a user’s interests and to adapt to changes in them. We employed a virtual user tested on a web document corpus to test the profile on learning of an emerging new topic of interest and forgetting uninteresting topics. The results clearly indicate the profile’s ability to adapt to frequent variations and radical changes in user interest. This work has focused on textual information, but it may have the potential to be applied in other media such as audio and images in which adaptivity to dynamic environments is crucial. These are all interesting future directions in which this work might develop
    corecore