99 research outputs found

    A survey of 5G technologies: regulatory, standardization and industrial perspectives

    Get PDF
    In recent years, there have been significant developments in the research on 5th Generation (5G) networks. Several enabling technologies are being explored for the 5G mobile system era. The aim is to evolve a cellular network that is intrinsically flexible and remarkably pushes forward the limits of legacy mobile systems across all dimensions of performance metrics. All the stakeholders, such as regulatory bodies, standardization authorities, industrial fora, mobile operators and vendors, must work in unison to bring 5G to fruition. In this paper, we aggregate the 5G-related information coming from the various stakeholders, in order to i) have a comprehensive overview of 5G and ii) to provide a survey of the envisioned 5G technologies; their development thus far from the perspective of those stakeholders will open up new frontiers of services and applications for next-generation wireless networks. Keywords: 5G, ITU, Next-generation wireless network

    Spectrum Sharing, Latency, and Security in 5G Networks with Application to IoT and Smart Grid

    Get PDF
    The surge of mobile devices, such as smartphones, and tables, demands additional capacity. On the other hand, Internet-of-Things (IoT) and smart grid, which connects numerous sensors, devices, and machines require ubiquitous connectivity and data security. Additionally, some use cases, such as automated manufacturing process, automated transportation, and smart grid, require latency as low as 1 ms, and reliability as high as 99.99\%. To enhance throughput and support massive connectivity, sharing of the unlicensed spectrum (3.5 GHz, 5GHz, and mmWave) is a potential solution. On the other hand, to address the latency, drastic changes in the network architecture is required. The fifth generation (5G) cellular networks will embrace the spectrum sharing and network architecture modifications to address the throughput enhancement, massive connectivity, and low latency. To utilize the unlicensed spectrum, we propose a fixed duty cycle based coexistence of LTE and WiFi, in which the duty cycle of LTE transmission can be adjusted based on the amount of data. In the second approach, a multi-arm bandit learning based coexistence of LTE and WiFi has been developed. The duty cycle of transmission and downlink power are adapted through the exploration and exploitation. This approach improves the aggregated capacity by 33\%, along with cell edge and energy efficiency enhancement. We also investigate the performance of LTE and ZigBee coexistence using smart grid as a scenario. In case of low latency, we summarize the existing works into three domains in the context of 5G networks: core, radio and caching networks. Along with this, fundamental constraints for achieving low latency are identified followed by a general overview of exemplary 5G networks. Besides that, a loop-free, low latency and local-decision based routing protocol is derived in the context of smart grid. This approach ensures low latency and reliable data communication for stationary devices. To address data security in wireless communication, we introduce a geo-location based data encryption, along with node authentication by k-nearest neighbor algorithm. In the second approach, node authentication by the support vector machine, along with public-private key management, is proposed. Both approaches ensure data security without increasing the packet overhead compared to the existing approaches

    ํฌ์†Œ์ธ์ง€๋ฅผ ์ด์šฉํ•œ ์ „์†ก๊ธฐ์ˆ  ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2019. 2. ์‹ฌ๋ณ‘ํšจ.The new wave of the technology revolution, named the fifth wireless systems, is changing our daily life dramatically. These days, unprecedented services and applications such as driverless vehicles and drone-based deliveries, smart cities and factories, remote medical diagnosis and surgery, and artificial intelligence-based personalized assistants are emerging. Communication mechanisms associated with these new applications and services are way different from traditional communications in terms of latency, energy efficiency, reliability, flexibility, and connection density. Since the current radio access mechanism cannot support these diverse services and applications, a new approach to deal with these relentless changes should be introduced. This compressed sensing (CS) paradigm is very attractive alternative to the conventional information processing operations including sampling, sensing, compression, estimation, and detection. To apply the CS techniques to wireless communication systems, there are a number of things to know and also several issues to be considered. In the last decade, CS techniques have spread rapidly in many applications such as medical imaging, machine learning, radar detection, seismology, computer science, statistics, and many others. Also, various wireless communication applications exploiting the sparsity of a target signal have been studied. Notable examples include channel estimation, interference cancellation, angle estimation, spectrum sensing, and symbol detection. The distinct feature of this work, in contrast to the conventional approaches exploiting naturally acquired sparsity, is to exploit intentionally designed sparsity to improve the quality of the communication systems. In the first part of the dissertation, we study the mapping data information into the sparse signal in downlink systems. We propose an approach, called sparse vector coding (SVC), suited for the short packet transmission. In SVC, since the data information is mapped to the position of sparse vector, whole data packet can be decoded by idenitifying nonzero positions of the sparse vector. From our simulations, we show that the packet error rate of SVC outperforms the conventional channel coding schemes at the URLLC regime. Moreover, we discuss the SVC transmission for the massive MTC access by overlapping multiple SVC-based packets into the same resources. Using the spare vector overlapping and multiuser CS decoding scheme, SVC-based transmission provides robustness against the co-channel interference and also provide comparable performance than other non-orthogonal multiple access (NOMA) schemes. By using the fact that SVC only identifies the support of sparse vector, we extend the SVC transmission without pilot transmission, called pilot-less SVC. Instead of using the support, we further exploit the magnitude of sparse vector for delivering additional information. This scheme is referred to as enhanced SVC. The key idea behind the proposed E-SVC transmission scheme is to transform the small information into a sparse vector and map the side-information into a magnitude of the sparse vector. Metaphorically, E-SVC can be thought as a standing a few poles to the empty table. As long as the number of poles is small enough and the measurements contains enough information to find out the marked cell positions, accurate recovery of E-SVC packet can be guaranteed. In the second part of this dissertation, we turn our attention to make sparsification of the non-sparse signal, especially for the pilot transmission and channel estimation. Unlike the conventional scheme where the pilot signal is transmitted without modification, the pilot signals are sent after the beamforming in the proposed technique. This work is motivated by the observation that the pilot overhead must scale linearly with the number of taps in CIR vector and the number of transmit antennas so that the conventional pilot transmission is not an appropriate option for the IoT devices. Primary goal of the proposed scheme is to minimize the nonzero entries of a time-domain channel vector by the help of multiple antennas at the basestation. To do so, we apply the time-domain sparse precoding, where each precoded channel propagates via fewer tap than the original channel vector. The received channel vector of beamformed pilots can be jointly estimated by the sparse recovery algorithm.5์„ธ๋Œ€ ๋ฌด์„ ํ†ต์‹  ์‹œ์Šคํ…œ์˜ ์ƒˆ๋กœ์šด ๊ธฐ์ˆ  ํ˜์‹ ์€ ๋ฌด์ธ ์ฐจ๋Ÿ‰ ๋ฐ ํ•ญ๊ณต๊ธฐ, ์Šค๋งˆํŠธ ๋„์‹œ ๋ฐ ๊ณต์žฅ, ์›๊ฒฉ ์˜๋ฃŒ ์ง„๋‹จ ๋ฐ ์ˆ˜์ˆ , ์ธ๊ณต ์ง€๋Šฅ ๊ธฐ๋ฐ˜ ๋งŸ์ถคํ˜• ์ง€์›๊ณผ ๊ฐ™์€ ์ „๋ก€ ์—†๋Š” ์„œ๋น„์Šค ๋ฐ ์‘์šฉํ”„๋กœ๊ทธ๋žจ์œผ๋กœ ๋ถ€์ƒํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ๋ฐ ์„œ๋น„์Šค์™€ ๊ด€๋ จ๋œ ํ†ต์‹  ๋ฐฉ์‹์€ ๋Œ€๊ธฐ ์‹œ๊ฐ„, ์—๋„ˆ์ง€ ํšจ์œจ์„ฑ, ์‹ ๋ขฐ์„ฑ, ์œ ์—ฐ์„ฑ ๋ฐ ์—ฐ๊ฒฐ ๋ฐ€๋„ ์ธก๋ฉด์—์„œ ๊ธฐ์กด ํ†ต์‹ ๊ณผ ๋งค์šฐ ๋‹ค๋ฅด๋‹ค. ํ˜„์žฌ์˜ ๋ฌด์„  ์•ก์„ธ์Šค ๋ฐฉ์‹์„ ๋น„๋กฏํ•œ ์ข…๋ž˜์˜ ์ ‘๊ทผ๋ฒ•์€ ์ด๋Ÿฌํ•œ ์š”๊ตฌ ์‚ฌํ•ญ์„ ๋งŒ์กฑํ•  ์ˆ˜ ์—†๊ธฐ ๋•Œ๋ฌธ์— ์ตœ๊ทผ์— sparse processing๊ณผ ๊ฐ™์€ ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ด ์ƒˆ๋กœ์šด ์ ‘๊ทผ ๋ฐฉ๋ฒ•์€ ํ‘œ๋ณธ ์ถ”์ถœ, ๊ฐ์ง€, ์••์ถ•, ํ‰๊ฐ€ ๋ฐ ํƒ์ง€๋ฅผ ํฌํ•จํ•œ ๊ธฐ์กด์˜ ์ •๋ณด ์ฒ˜๋ฆฌ์— ๋Œ€ํ•œ ํšจ์œจ์ ์ธ ๋Œ€์ฒด๊ธฐ์ˆ ๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ง€๋‚œ 10๋…„ ๋™์•ˆ compressed sensing (CS)๊ธฐ๋ฒ•์€ ์˜๋ฃŒ์˜์ƒ, ๊ธฐ๊ณ„ํ•™์Šต, ํƒ์ง€, ์ปดํ“จํ„ฐ ๊ณผํ•™, ํ†ต๊ณ„ ๋ฐ ๊ธฐํƒ€ ์—ฌ๋Ÿฌ ๋ถ„์•ผ์—์„œ ๋น ๋ฅด๊ฒŒ ํ™•์‚ฐ๋˜์—ˆ๋‹ค. ๋˜ํ•œ, ์‹ ํ˜ธ์˜ ํฌ์†Œ์„ฑ(sparsity)๋ฅผ ์ด์šฉํ•˜๋Š” CS ๊ธฐ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๋ฌด์„  ํ†ต์‹ ์ด ์—ฐ๊ตฌ๋˜์—ˆ๋‹ค. ์ฃผ๋ชฉํ• ๋งŒํ•œ ์˜ˆ๋กœ๋Š” ์ฑ„๋„ ์ถ”์ •, ๊ฐ„์„ญ ์ œ๊ฑฐ, ๊ฐ๋„ ์ถ”์ •, ๋ฐ ์ŠคํŽ™ํŠธ๋Ÿผ ๊ฐ์ง€๊ฐ€ ์žˆ์œผ๋ฉฐ ํ˜„์žฌ๊นŒ์ง€ ์—ฐ๊ตฌ๋Š” ์ฃผ์–ด์ง„ ์‹ ํ˜ธ๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋ณธ๋ž˜์˜ ํฌ์†Œ์„ฑ์— ์ฃผ๋ชฉํ•˜์˜€์œผ๋‚˜ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๊ธฐ์กด์˜ ์ ‘๊ทผ ๋ฐฉ๋ฒ•๊ณผ ๋‹ฌ๋ฆฌ ์ธ์œ„์ ์œผ๋กœ ์„ค๊ณ„๋œ ํฌ์†Œ์„ฑ์„ ์ด์šฉํ•˜์—ฌ ํ†ต์‹  ์‹œ์Šคํ…œ์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์šฐ์„  ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์šด๋งํฌ ์ „์†ก์—์„œ ํฌ์†Œ ์‹ ํ˜ธ ๋งคํ•‘์„ ํ†ตํ•œ ๋ฐ์ดํ„ฐ ์ „์†ก ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜๋ฉฐ ์งง์€ ํŒจํ‚ท (short packet) ์ „์†ก์— ์ ํ•ฉํ•œ CS ์ ‘๊ทผ๋ฒ•์„ ํ™œ์šฉํ•˜๋Š” ๊ธฐ์ˆ ์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๊ธฐ์ˆ ์ธ ํฌ์†Œ๋ฒกํ„ฐ์ฝ”๋”ฉ (sparse vector coding, SVC)์€ ๋ฐ์ดํ„ฐ ์ •๋ณด๊ฐ€ ์ธ๊ณต์ ์ธ ํฌ์†Œ๋ฒกํ„ฐ์˜ nonzero element์˜ ์œ„์น˜์— ๋งคํ•‘ํ•˜์—ฌ ์ „์†ก๋œ ๋ฐ์ดํ„ฐ ํŒจํ‚ท์€ ํฌ์†Œ๋ฒกํ„ฐ์˜ 0์ด ์•„๋‹Œ ์œ„์น˜๋ฅผ ์‹๋ณ„ํ•จ์œผ๋กœ ์›์‹ ํ˜ธ ๋ณต์›์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๋ถ„์„๊ณผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•ด ์ œ์•ˆํ•˜๋Š” SVC ๊ธฐ๋ฒ•์˜ ํŒจํ‚ท ์˜ค๋ฅ˜๋ฅ ์€ ultra-reliable and low latency communications (URLLC) ์„œ๋น„์Šค๋ฅผ ์ง€์›์„ ์œ„ํ•ด ์‚ฌ์šฉ๋˜๋Š” ์ฑ„๋„์ฝ”๋”ฉ๋ฐฉ์‹๋ณด๋‹ค ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ค€๋‹ค. ๋˜ํ•œ, ๋ณธ ๋…ผ๋ฌธ์€ SVC๊ธฐ์ˆ ์„ ๋‹ค์Œ์˜ ์„ธ๊ฐ€์ง€ ์˜์—ญ์œผ๋กœ ํ™•์žฅํ•˜์˜€๋‹ค. ์ฒซ์งธ๋กœ, ์—ฌ๋Ÿฌ ๊ฐœ์˜ SVC ๊ธฐ๋ฐ˜ ํŒจํ‚ท์„ ๋™์ผํ•œ ์ž์›์— ๊ฒน์น˜๊ฒŒ ์ „์†กํ•จ์œผ๋กœ ์ƒํ–ฅ๋งํฌ์—์„œ ๋Œ€๊ทœ๋ชจ ์ „์†ก์„ ์ง€์›ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ค‘์ฒฉ๋œ ํฌ์†Œ๋ฒกํ„ฐ๋ฅผ ๋‹ค์ค‘์‚ฌ์šฉ์ž CS ๋””์ฝ”๋”ฉ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์—ฌ ์ฑ„๋„ ๊ฐ„์„ญ์— ๊ฐ•์ธํ•œ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•˜๊ณ  ๋น„์ง๊ต ๋‹ค์ค‘ ์ ‘์† (NOMA) ๋ฐฉ์‹๊ณผ ์œ ์‚ฌํ•œ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•œ๋‹ค. ๋‘˜์งธ๋กœ, SVC ๊ธฐ์ˆ ์ด ํฌ์†Œ ๋ฒกํ„ฐ์˜ support๋งŒ์„ ์‹๋ณ„ํ•œ๋‹ค๋Š” ์‚ฌ์‹ค์„ ์ด์šฉํ•˜์—ฌ ํŒŒ์ผ๋Ÿฟ ์ „์†ก์ด ํ•„์š”์—†๋Š” pilotless-SVC ์ „์†ก ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ฑ„๋„ ์ •๋ณด๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ์—๋„ ํฌ์†Œ ๋ฒกํ„ฐ์˜ support์˜ ํฌ๊ธฐ๋Š” ์ฑ„๋„์˜ ํฌ๊ธฐ์— ๋น„๋ก€ํ•˜๊ธฐ ๋•Œ๋ฌธ์— pilot์—†์ด ๋ณต์›์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์…‹์งธ๋กœ, ํฌ์†Œ๋ฒกํ„ฐ์˜ support์˜ ํฌ๊ธฐ์— ์ถ”๊ฐ€ ์ •๋ณด๋ฅผ ์ „์†กํ•จ์œผ๋กœ ๋ณต์› ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ ์‹œํ‚ค๋Š” enhanced SVC (E-SVC)๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆ๋œ E-SVC ์ „์†ก ๋ฐฉ์‹์˜ ํ•ต์‹ฌ ์•„๋””๋””์–ด๋Š” ์งง์€ ํŒจํ‚ท์„ ์ „์†ก๋˜๋Š” ์ •๋ณด๋ฅผ ํฌ์†Œ ๋ฒกํ„ฐ๋กœ ๋ณ€ํ™˜ํ•˜๊ณ  ์ •๋ณด ๋ณต์›์„ ๋ณด์กฐํ•˜๋Š” ์ถ”๊ฐ€ ์ •๋ณด๋ฅผ ํฌ์†Œ ๋ฒกํ„ฐ์˜ ํฌ๊ธฐ (magnitude)๋กœ ๋งคํ•‘ํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, SVC ๊ธฐ์ˆ ์„ ํŒŒ์ผ๋Ÿฟ ์ „์†ก์— ํ™œ์šฉํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŠนํžˆ, ์ฑ„๋„ ์ถ”์ •์„ ์œ„ํ•ด ์ฑ„๋„ ์ž„ํŽ„์Šค ์‘๋‹ต์˜ ์‹ ํ˜ธ๋ฅผ ํฌ์†Œํ™”ํ•˜๋Š” ํ”„๋ฆฌ์ฝ”๋”ฉ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ์„ ํ”„๋กœ์ฝ”๋”ฉ ์—†์ด ์ „์†ก๋˜๋Š” ๊ธฐ์กด์˜ ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ, ์ œ์•ˆ๋œ ๊ธฐ์ˆ ์—์„œ๋Š” ํŒŒ์ผ๋Ÿฟ ์‹ ํ˜ธ๋ฅผ ๋น”ํฌ๋ฐํ•˜์—ฌ ์ „์†กํ•œ๋‹ค. ์ œ์•ˆ๋œ ๊ธฐ๋ฒ•์€ ๊ธฐ์ง€๊ตญ์—์„œ ๋‹ค์ค‘ ์•ˆํ…Œ๋‚˜๋ฅผ ํ™œ์šฉํ•˜์—ฌ ์ฑ„๋„ ์‘๋‹ต์˜ 0์ด ์•„๋‹Œ ์š”์†Œ๋ฅผ ์ตœ์†Œํ™”ํ•˜๋Š” ์‹œ๊ฐ„ ์˜์—ญ ํฌ์†Œ ํ”„๋ฆฌ์ฝ”๋”ฉ์„ ์ ์šฉํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋” ์ ํ™•ํ•œ ์ฑ„๋„ ์ถ”์ •์„ ๊ฐ€๋Šฅํ•˜๋ฉฐ ๋” ์ ์€ ํŒŒ์ผ๋Ÿฟ ์˜ค๋ฒ„ํ—ค๋“œ๋กœ ์ฑ„๋„ ์ถ”์ •์ด ๊ฐ€๋Šฅํ•˜๋‹ค.Abstract i Contents iv List of Tables viii List of Figures ix 1 INTRODUCTION 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Three Key Services in 5G systems . . . . . . . . . . . . . . . 2 1.1.2 Sparse Processing in Wireless Communications . . . . . . . . 4 1.2 Contributions and Organization . . . . . . . . . . . . . . . . . . . . . 7 1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 Sparse Vector Coding for Downlink Ultra-reliable and Low Latency Communications 12 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 URLLC Service Requirements . . . . . . . . . . . . . . . . . . . . . 15 2.2.1 Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.2 Ultra-High Reliability . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Coexistence . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 URLLC Physical Layer in 5G NR . . . . . . . . . . . . . . . . . . . 18 2.3.1 Packet Structure . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 Frame Structure and Latency-sensitive Scheduling Schemes . 20 2.3.3 Solutions to the Coexistence Problem . . . . . . . . . . . . . 22 2.4 Short-sized Packet in LTE-Advanced Downlink . . . . . . . . . . . . 24 2.5 Sparse Vector Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.1 SVC Encoding and Transmission . . . . . . . . . . . . . . . 25 2.5.2 SVC Decoding . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.3 Identification of False Alarm . . . . . . . . . . . . . . . . . . 33 2.6 SVC Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 36 2.7 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.1 Codebook Design . . . . . . . . . . . . . . . . . . . . . . . . 48 2.7.2 High-order Modulation . . . . . . . . . . . . . . . . . . . . . 49 2.7.3 Diversity Transmission . . . . . . . . . . . . . . . . . . . . . 50 2.7.4 SVC without Pilot . . . . . . . . . . . . . . . . . . . . . . . 50 2.7.5 Threshold to Prevent False Alarm Event . . . . . . . . . . . . 51 2.8 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 52 2.8.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 52 2.8.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 53 2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3 Sparse Vector Coding for Uplink Massive Machine-type Communications 59 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Uplink NOMA transmission for mMTC . . . . . . . . . . . . . . . . 61 3.3 Sparse Vector Coding based NOMA for mMTC . . . . . . . . . . . . 63 3.3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3.2 Joint Multiuser Decoding . . . . . . . . . . . . . . . . . . . . 66 3.4 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 68 3.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 69 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Pilot-less Sparse Vector Coding for Short Packet Transmission 72 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Pilot-less Sparse Vector Coding Processing . . . . . . . . . . . . . . 75 4.2.1 SVC Processing with Pilot Symbols . . . . . . . . . . . . . . 75 4.2.2 Pilot-less SVC . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.2.3 PL-SVC Decoding in Multiple Basestation Antennas . . . . . 78 4.3 Simulations and Discussions . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 81 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Joint Analog and Quantized Feedback via Sparse Vector Coding 84 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.2 System Model for Joint Spase Vector Coding . . . . . . . . . . . . . 86 5.3 Sparse Recovery Algorithm and Performance Analysis . . . . . . . . 90 5.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5.4.1 Linear Interpolation of Sensing Information . . . . . . . . . . 96 5.4.2 Linear Combined Feedback . . . . . . . . . . . . . . . . . . 96 5.4.3 One-shot Packet Transmission . . . . . . . . . . . . . . . . . 96 5.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.5.2 Results and Discussions . . . . . . . . . . . . . . . . . . . . 98 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Sparse Beamforming for Enhanced Mobile Broadband Communications 101 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.1.1 Increase the number of transmit antennas . . . . . . . . . . . 102 6.1.2 2D active antenna system (AAS) . . . . . . . . . . . . . . . . 103 6.1.3 3D channel environment . . . . . . . . . . . . . . . . . . . . 104 6.1.4 RS transmission for CSI acquisition . . . . . . . . . . . . . . 106 6.2 System Design and Standardization of FD-MIMO Systems . . . . . . 107 6.2.1 Deployment scenarios . . . . . . . . . . . . . . . . . . . . . 108 6.2.2 Antenna configurations . . . . . . . . . . . . . . . . . . . . . 108 6.2.3 TXRU architectures . . . . . . . . . . . . . . . . . . . . . . 109 6.2.4 New CSI-RS transmission strategy . . . . . . . . . . . . . . . 112 6.2.5 CSI feedback mechanisms for FD-MIMO systems . . . . . . 114 6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 6.3.1 Basic System Model . . . . . . . . . . . . . . . . . . . . . . 116 6.3.2 Beamformed Pilot Transmission . . . . . . . . . . . . . . . . 117 6.4 Sparsification of Pilot Beamforming . . . . . . . . . . . . . . . . . . 118 6.4.1 Time-domain System Model without Pilot Beamforming . . . 119 6.4.2 Pilot Beamforming . . . . . . . . . . . . . . . . . . . . . . . 120 6.5 Channel Estimation of Beamformed Pilots . . . . . . . . . . . . . . . 124 6.5.1 Recovery using Multiple Measurement Vector . . . . . . . . . 124 6.5.2 MSE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.6 Simulations and Discussion . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.1 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . 129 6.6.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 130 6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7 Conclusion 136 7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 139 Abstract (In Korean) 152Docto

    Cross-Layer Optimization for Power-Efficient and Robust Digital Circuits and Systems

    Full text link
    With the increasing digital services demand, performance and power-efficiency become vital requirements for digital circuits and systems. However, the enabling CMOS technology scaling has been facing significant challenges of device uncertainties, such as process, voltage, and temperature variations. To ensure system reliability, worst-case corner assumptions are usually made in each design level. However, the over-pessimistic worst-case margin leads to unnecessary power waste and performance loss as high as 2.2x. Since optimizations are traditionally confined to each specific level, those safe margins can hardly be properly exploited. To tackle the challenge, it is therefore advised in this Ph.D. thesis to perform a cross-layer optimization for digital signal processing circuits and systems, to achieve a global balance of power consumption and output quality. To conclude, the traditional over-pessimistic worst-case approach leads to huge power waste. In contrast, the adaptive voltage scaling approach saves power (25% for the CORDIC application) by providing a just-needed supply voltage. The power saving is maximized (46% for CORDIC) when a more aggressive voltage over-scaling scheme is applied. These sparsely occurred circuit errors produced by aggressive voltage over-scaling are mitigated by higher level error resilient designs. For functions like FFT and CORDIC, smart error mitigation schemes were proposed to enhance reliability (soft-errors and timing-errors, respectively). Applications like Massive MIMO systems are robust against lower level errors, thanks to the intrinsically redundant antennas. This property makes it applicable to embrace digital hardware that trades quality for power savings.Comment: 190 page

    Advanced wireless communications using large numbers of transmit antennas and receive nodes

    Get PDF
    The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. First, we propose practical open-loop and closed-loop training frameworks to reduce the overhead of the downlink training phase. We then discuss efficient CSI quantization techniques using a trellis search. The proposed CSI quantization techniques can be implemented with a complexity that only grows linearly with the number of transmit antennas while the performance is close to the optimal case. We also analyze distributed reception using a large number of geographically separated nodes, a scenario that may become popular with the emergence of the Internet of Things. For distributed reception, we first propose coded distributed diversity to minimize the symbol error probability at the fusion center when the transmitter is equipped with a single antenna. Then we develop efficient receivers at the fusion center using minimal processing overhead at the receive nodes when the transmitter with multiple transmit antennas sends multiple symbols simultaneously using spatial multiplexing

    Analysis and Design of Algorithms for the Improvement of Non-coherent Massive MIMO based on DMPSK for beyond 5G systems

    Get PDF
    Menciรณn Internacional en el tรญtulo de doctorNowadays, it is nearly impossible to think of a service that does not rely on wireless communications. By the end of 2022, mobile internet represented a 60% of the total global online traffic. There is an increasing trend both in the number of subscribers and in the traffic handled by each subscriber. Larger data rates, smaller extreme-to-extreme (E2E) delays and greater number of devices are current interests for the development of mobile communications. Furthermore, it is foreseen that these demands should also be fulfilled in scenarios with stringent conditions, such as very fast varying wireless communications channels (either in time or frequency) or scenarios with power constraints, mainly found when the equipment is battery powered. Since most of the wireless communications techniques and standards rely on the fact that the wireless channel is somehow characterized or estimated to be pre or post-compensated in transmission (TX) or reception (RX), there is a clear problem when the channels vary rapidly or the available power is constrained. To estimate the wireless channel and obtain the so-called channel state information (CSI), some of the available resources (either in time, frequency or any other dimension), are utilized by including known signals in the TX and RX typically known as pilots, thus avoiding their use for data transmission. If the channels vary rapidly, they must be estimated many times, which results in a very low data efficiency of the communications link. Also, in case the power is limited or the wireless link distance is large, the resulting signal-tointerference- plus-noise ratio (SINR) will be low, which is a parameter that is directly related to the quality of the channel estimation and the performance of the data reception. This problem is aggravated in massive multiple-input multiple-output (massive MIMO), which is a promising technique for future wireless communications since it can increase the data rates, increase the reliability and cope with a larger number of simultaneous devices. In massive MIMO, the base station (BS) is typically equipped with a large number of antennas that are coordinated. In these scenarios, the channels must be estimated for each antenna (or at least for each user), and thus, the aforementioned problem of channel estimation aggravates. In this context, algorithms and techniques for massive MIMO without CSI are of interest. This thesis main topic is non-coherent massive multiple-input multiple-output (NC-mMIMO) which relies on the use of differential M-ary phase shift keying (DMPSK) and the spatial diversity of the antenna arrays to be able to detect the useful transmitted data without CSI knowledge. On the one hand, hybrid schemes that combine the coherent and non-coherent schemes allowing to get the best of both worlds are proposed. These schemes are based on distributing the resources between non-coherent (NC) and coherent data, utilizing the NC data to estimate the channel without using pilots and use the estimated channel for the coherent data. On the other hand, new constellations and user allocation strategies for the multi-user scenario of NC-mMIMO are proposed. The new constellations are better than the ones in the literature and obtained using artificial intelligence techniques, more concretely evolutionary computation.This work has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Skล‚odowska-Curie ETN TeamUp5G, grant agreement No. 813391. The PhD student was the Early Stage Researcher (ESR) number 2 of the project. This work has also received funding from the Spanish National Project IRENE-EARTH (PID2020-115323RB-C33) (MINECO/AEI/FEDER, UE), which funded the work of some coauthors.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Luis Castedo Ribas.- Secretario: Matilde Pilar Sรกnchez Fernรกndez.- Vocal: Eva Lagunas Targaron
    • โ€ฆ
    corecore