755,448 research outputs found

    Revealing the Vicious Circle of Disengaged User Acceptance: A SaaS Provider's Perspective

    Get PDF
    User acceptance tests (UAT) are an integral part of many different software engineering methodologies. In this paper, we examine the influence of UATs on the relationship between users and Software-as-a-Service (SaaS) applications, which are continuously delivered rather than rolled out during a one-off signoff process. Based on an exploratory qualitative field study at a multinational SaaS provider in Denmark, we show that UATs often address the wrong problem in that positive user acceptance may actually indicate a negative user experience. Hence, SaaS providers should be careful not to rest on what we term disengaged user acceptance. Instead, we outline an approach that purposefully queries users for ambivalent emotions that evoke constructive criticism, in order to facilitate a discourse that favors the continuous innovation of a SaaS system. We discuss theoretical and practical implications of our approach for the study of user engagement in testing SaaS applications

    An Exploratory Study of Field Failures

    Get PDF
    Field failures, that is, failures caused by faults that escape the testing phase leading to failures in the field, are unavoidable. Improving verification and validation activities before deployment can identify and timely remove many but not all faults, and users may still experience a number of annoying problems while using their software systems. This paper investigates the nature of field failures, to understand to what extent further improving in-house verification and validation activities can reduce the number of failures in the field, and frames the need of new approaches that operate in the field. We report the results of the analysis of the bug reports of five applications belonging to three different ecosystems, propose a taxonomy of field failures, and discuss the reasons why failures belonging to the identified classes cannot be detected at design time but shall be addressed at runtime. We observe that many faults (70%) are intrinsically hard to detect at design-time

    An Exploratory Study of Field Failures

    Full text link
    Field failures, that is, failures caused by faults that escape the testing phase leading to failures in the field, are unavoidable. Improving verification and validation activities before deployment can identify and timely remove many but not all faults, and users may still experience a number of annoying problems while using their software systems. This paper investigates the nature of field failures, to understand to what extent further improving in-house verification and validation activities can reduce the number of failures in the field, and frames the need of new approaches that operate in the field. We report the results of the analysis of the bug reports of five applications belonging to three different ecosystems, propose a taxonomy of field failures, and discuss the reasons why failures belonging to the identified classes cannot be detected at design time but shall be addressed at runtime. We observe that many faults (70%) are intrinsically hard to detect at design-time

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Code coverage measurement framework for android devices

    Get PDF
    Software testing is a very important activity in the software development life cycle. Numerous general black- and white-box techniques exist to achieve different goals and there are a lot of practices for different kinds of software. The testing of embedded systems, however, raises some very special constraints and requirements in software testing. Special solutions exist in this field, but there is no general testing methodology for embedded systems. One of the goals of the CIRENE project was to fill this gap and define a general testing methodology for embedded systems that could be specialized to different environments. The project included a pilot implementation of this methodology in a specific environment: an Android-based Digital TV receiver (Set-Top-Box). In this pilot, we implemented method level code coverage measurement of Android applications. This was done by instrumenting the applications and creating a framework for the Android device that collected basic information from the instrumented applications and communicated it through the network towards a server where the data was finally processed. The resulting code coverage information was used for many purposes according to the methodology: test case selection and prioritization, traceability computation, dead code detection, etc. The resulting methodology and toolset were reused in another project where we investigated whether the coverage information can be used to determine locations to be instrumented in order to collect relevant information about software usability. In this paper, we introduce the pilot implementation and, as a proof-of-concept, present how the coverage results were used for different purposes

    The cloudification perspectives of search-based software testing

    Get PDF
    To promote and sustain the future of our society, the most critical challenge of contemporary software engineering and cloud computing experts are related to the efficient integration of emerging cloudification and DevOps practices in the development and testing processes of modern systems. In this context, we argue that SBST can play a critical role in improving testing practices and automating the verification and validation (V&V) of cloudification properties of Cloud Native Applications (CNA). Hence, in this paper, we focus on the untouched side of SBST in the cloud field, by discussing (1) the testing challenges in the cloud research field and (2) summarizing the recent contributions of SBST in supporting development practices of CNA. Finally, we discuss the emerging research topics characterizing the cloudification perspectives of SBST in the cloud field
    corecore