583 research outputs found

    Field expansions for systems of strongly coupled plasmonic nanoparticles

    Get PDF
    This paper is concerned with efficient representations and approximations of the solution to the scattering problem by a system of strongly coupled plasmonic particles. Three schemes are developed: the first is the resonant expansion which uses the resonant modes of the system of particles computed by a conformal transformation, the second is the hybridized resonant expansion which uses linear combinations of the resonant modes for each of the particles in the system as a basis to represent the solution, and the last one is the multipole expansion with respect to the origin. By considering a system formed by two plasmonic particles of circular shape, we demonstrate the relations between these expansion schemes and their advantages and disadvantages both analytically and numerically. In particular, we emphasize the efficiency of the resonant expansion scheme in approximating the near field of the system of particles. The difference between these plasmonic particle systems and the nonresonant dielectric particle system is also highlighted. The paper provides a guidance on the challenges for numerical simulations of strongly coupled plasmonic systems.Comment: 16 pages, 1 figur

    Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection

    Full text link
    We theoretically analyse photonic-plasmonic coupling between a high Q whispering gallery mode (WGM) resonator and a core-shell nanoparticle. Blue and red shifts of WGM resonances are shown to arise from crossing of the photonic and plasmonic modes. Level repulsion in the hybrid system is further seen to enable sensitivity enhancements in WGM sensors: maximal when the two resonators are detuned by half the plasmon linewidth. Approximate bounds are given to quantify possible enhancements. Criteria for reactive vs. resistive coupling are also established

    Robustness of the Rabi splitting under nonlocal corrections in plexcitonics

    Get PDF
    We explore theoretically how nonlocal corrections in the description of the metal affect the strong coupling between excitons and plasmons in typical examples where nonlocal effects are anticipated to be strong, namely small metallic nanoparticles, thin metallic nanoshells or dimers with narrow separations, either coated with or encapsulating an excitonic layer. Through detailed simulations based on the generalised nonlocal optical response theory, which simultaneously accounts both for modal shifts due to screening and for surface-enhanced Landau damping, we show that, contrary to expectations, the influence of nonlocality is rather limited, as in most occasions the width of the Rabi splitting remains largely unaffected and the two hybrid modes are well distinguishable. We discuss how this behaviour can be understood in view of the popular coupled-harmonic-oscillator model, while we also provide analytic solutions based on Mie theory to describe the hybrid modes in the case of matryoshka-like single nanoparticles. Our analysis provides an answer to a so far open question, that of the influence of nonlocality on strong coupling, and is expected to facilitate the design and study of plexcitonic architectures with ultrafine geometrical details

    Quasinormal-mode modeling and design in nonlinear nano-optics

    Full text link
    Based on quasinormal-mode theory, we propose a novel approach enabling a deep analytical insight into the multi-parameter design and optimization of nonlinear photonic structures at subwavelength scale. A key distinction of our method from previous formulations relying on multipolar Mie-scattering expansions is that it directly exploits the natural resonant modes of the nanostructures, which provide the field enhancement to achieve significant nonlinear efficiency. Thanks to closed-form expression for the nonlinear overlap integral between the interacting modes, we illustrate the potential of our method with a two-order-of-magnitude boost of second harmonic generation in a semiconductor nanostructure, by engineering both the sign of χ(2)\chi^{(2)} at subwavelength scale and the structure of the pump beam

    Nonradiative limitations to plasmon propagation in chains of metallic nanoparticles

    Full text link
    We investigate the collective plasmonic modes in a chain of metallic nanoparticles that are coupled by near-field interactions. The size- and momentum-dependent nonradiative Landau damping and radiative decay rates are calculated analytically within an open quantum system approach. These decay rates determine the excitation propagation along the chain. In particular, the behavior of the radiative decay rate as a function of the plasmon wavelength leads to a transition from an exponential decay of the collective excitation for short distances to an algebraic decay for large distances. Importantly, we show that the exponential decay is of a purely nonradiative origin. Our transparent model enables us to provide analytical expressions for the polarization-dependent plasmon excitation profile along the chain and for the associated propagation length. Our theoretical analysis constitutes an important step in the quest for the optimal conditions for plasmonic propagation in nanoparticle chains.Comment: 14 pages, 6 figures; v2: published versio

    Optical anapoles in nanophotonics and meta-optics

    Full text link
    Interference of electromagnetic modes supported by subwavelength photonic structures is one of the key concepts that underpins the subwavelength control of light in meta-optics. It drives the whole realm of all-dielectric Mie-resonant nanophotonics with many applications for low-loss nanoscale optical antennas, metasurfaces, and metadevices. Specifically, interference of the electric and toroidal dipole moments results in a very peculiar, low-radiating optical state associated with the concept of optical anapole. Here, we uncover the physics of multimode interferences and multipolar interplay in nanostructures with an intriguing example of the optical anapole. We review the recently emerged field of anapole electrodynamics explicating its relevance to multipolar nanophotonics, including direct experimental observations, manifestations in nonlinear optics, and rapidly expanding applications in nanoantennas, active photonics, and metamaterials.Comment: 14 pages, 6 figure

    Three-dimensional integral equation approach to light scattering, extinction cross sections, local density of states, and quasi-normal modes

    Get PDF
    We present a numerical formalism for solving the Lippmann-Schwinger equation for the electric field in three dimensions. The formalism may be applied to scatterers of different shapes and embedded in different background media, and we develop it in detail for the specific case of spherical scatterers in a homogeneous background medium. In addition, we show how several physically important quantities may readily be calculated with the formalism. These quantities include the extinction cross section, the total Green's tensor, the projected local density of states and the Purcell factor as well as the quasinormal modes of leaky resonators with the associated resonance frequencies and quality factors. We demonstrate the calculations for the well-known plasmonic dimer consisting of two silver nanoparticles and thus illustrate the versatility of the formalism for use in modeling of advanced nanophotonic devices.Comment: 14 pages, 10 figures. Accepted for JOSA

    Full-wave electromagnetic modes and hybridization in nanoparticle dimers

    Get PDF
    The plasmon hybridization theory is based on a quasi-electrostatic approximation of the Maxwell's equations. It does not take into account magnetic interactions, retardation effects, and radiation losses. Magnetic interactions play a dominant role in the scattering from dielectric nanoparticles. The retardation effects play a fundamental role in the coupling of the modes with the incident radiation and in determining their radiative strength; their exclusion may lead to erroneous predictions of the excited modes and of the scattered power spectra. Radiation losses may lead to a significant broadening of the scattering resonances. We propose a hybridization theory for non-hermitian composite systems based on the full-Maxwell equations that, overcoming all the limitations of the plasmon hybridization theory, unlocks the description of dielectric dimers. As an example, we decompose the scattered field from silicon and silver dimers, under different excitation conditions and gap-sizes, in terms of dimer modes, pinpointing the hybridizing isolated-sphere modes behind them.Comment: Supplemental material available upon reques

    Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams

    Get PDF
    Control of the polarization distribution of light allows tailoring the electromagnetic response of plasmonic particles. By rigorously extending the generalized multiparticle Mie theory, we show that focused cylindrical vector beams (CVB) can be used to efficiently excite dark plasmon modes in nanoparticle clusters. In addition to the small radiative damping and large field enhancement associated to dark modes, excitation with CVB can give place to unusual phenomenology like the formation of electromagnetic cold spots and the generation of Fano resonances in highly symmetric clusters. Overall, the results show the potential of CVB to tailor the plasmonic response of nanoparticle clusters in a unique way
    • …
    corecore