1,213 research outputs found

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Undergraduate Catalog of Studies, 2023-2024

    Get PDF

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Effects of municipal smoke-free ordinances on secondhand smoke exposure in the Republic of Korea

    Get PDF
    ObjectiveTo reduce premature deaths due to secondhand smoke (SHS) exposure among non-smokers, the Republic of Korea (ROK) adopted changes to the National Health Promotion Act, which allowed local governments to enact municipal ordinances to strengthen their authority to designate smoke-free areas and levy penalty fines. In this study, we examined national trends in SHS exposure after the introduction of these municipal ordinances at the city level in 2010.MethodsWe used interrupted time series analysis to assess whether the trends of SHS exposure in the workplace and at home, and the primary cigarette smoking rate changed following the policy adjustment in the national legislation in ROK. Population-standardized data for selected variables were retrieved from a nationally representative survey dataset and used to study the policy action’s effectiveness.ResultsFollowing the change in the legislation, SHS exposure in the workplace reversed course from an increasing (18% per year) trend prior to the introduction of these smoke-free ordinances to a decreasing (−10% per year) trend after adoption and enforcement of these laws (β2 = 0.18, p-value = 0.07; β3 = −0.10, p-value = 0.02). SHS exposure at home (β2 = 0.10, p-value = 0.09; β3 = −0.03, p-value = 0.14) and the primary cigarette smoking rate (β2 = 0.03, p-value = 0.10; β3 = 0.008, p-value = 0.15) showed no significant changes in the sampled period. Although analyses stratified by sex showed that the allowance of municipal ordinances resulted in reduced SHS exposure in the workplace for both males and females, they did not affect the primary cigarette smoking rate as much, especially among females.ConclusionStrengthening the role of local governments by giving them the authority to enact and enforce penalties on SHS exposure violation helped ROK to reduce SHS exposure in the workplace. However, smoking behaviors and related activities seemed to shift to less restrictive areas such as on the streets and in apartment hallways, negating some of the effects due to these ordinances. Future studies should investigate how smoke-free policies beyond public places can further reduce the SHS exposure in ROK

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a 'snapshot' introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation

    IoT Transmission Technologies for Distributed Measurement Systems in Critical Environments

    Get PDF
    Distributed measurement systems are spread in the most diverse application scenarios, and Internet of Things (IoT) transmission equipment is usually the enabling technologies for such measurement systems that need to feature wireless connectivity to ensure pervasiveness. Because wireless measurement systems have been deployed for the last years even in critical environments, assessing transmission technologies performances in such contexts is fundamental. Indeed, they are the most challenging ones for wireless data transmission due to their intrinsic attenuation capabilities. Several scenarios in which measurement systems can be deployed are analysed. Firstly, marine contexts are treated by considering above-the-sea wireless links. Such setting can be experienced in whichever application requiring remote monitoring of facilities and assets that are offshore installed. Some instances are offshore sea farming plants, or remote video monitoring systems installed on seamark buoys. Secondly, wireless communications taking place from the underground to the aboveground are covered. This scenario is typical of precision agriculture applications, where the accurate measurement of underground physical parameters is needed to be remotely sent to optimise crops reducing the wastefulness of fundamental resources (e.g., irrigation water). Thirdly, wireless communications occurring from the underwater to the abovewater are addressed. Such situation is inevitable for all those infrastructures monitoring conservation status of underwater species like algae, seaweeds and reef. Then, wireless links happening traversing metal surfaces and structures are tackled. Such context is commonly encountered in asset tracking and monitoring (e.g., containers), or in smart metering applications (e.g., utility meters). Lastly, sundry harsh environments that are typical of industrial monitoring (e.g., vibrating machineries, harsh temperature and humidity rooms, corrosive atmospheres) are tested to validate pervasive measurement infrastructures even in such contexts that are usually experienced in Industrial Internet of Things (IIoT) applications. The performances of wireless measurement systems in such scenarios are tested by sorting out ad-hoc measurement campaigns. Finally, IoT measurement infrastructures respectively deployed in above-the-sea and underground-to-aboveground settings are described to provide real applications in which such facilities can be effectively installed. Nonetheless, the aforementioned application scenarios are only some amid their sundry variety. Indeed, nowadays distributed pervasive measurement systems have to be thought in a broad way, resulting in countless instances: predictive maintenance, smart healthcare, smart cities, industrial monitoring, or smart agriculture, etc. This Thesis aims at showing distributed measurement systems in critical environments to set up pervasive monitoring infrastructures that are enabled by IoT transmission technologies. At first, they are presented, and then the harsh environments are introduced, along with the relative theoretical analysis modelling path loss in such conditions. It must be underlined that this Thesis aims neither at finding better path loss models with respect to the existing ones, nor at improving them. Indeed, path loss models are exploited as they are, in order to derive estimates of losses to understand the effectiveness of the deployed infrastructure. In fact, some transmission tests in those contexts are described, along with providing examples of these types of applications in the field, showing the measurement infrastructures and the relative critical environments serving as deployment sites. The scientific relevance of this Thesis is evident since, at the moment, the literature lacks a comparative study like this, showing both transmission performances in critical environments, and the deployment of real IoT distributed wireless measurement systems in such contexts

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Under construction: infrastructure and modern fiction

    Full text link
    In this dissertation, I argue that infrastructural development, with its technological promises but widening geographic disparities and social and environmental consequences, informs both the narrative content and aesthetic forms of modernist and contemporary Anglophone fiction. Despite its prevalent material forms—roads, rails, pipes, and wires—infrastructure poses particular formal and narrative problems, often receding into the background as mere setting. To address how literary fiction theorizes the experience of infrastructure requires reading “infrastructurally”: that is, paying attention to the seemingly mundane interactions between characters and their built environments. The writers central to this project—James Joyce, William Faulkner, Karen Tei Yamashita, and Mohsin Hamid—take up the representational challenges posed by infrastructure by bringing transit networks, sanitation systems, and electrical grids and the histories of their development and use into the foreground. These writers call attention to the political dimensions of built environments, revealing the ways infrastructures produce, reinforce, and perpetuate racial and socioeconomic fault lines. They also attempt to formalize the material relations of power inscribed by and within infrastructure; the novel itself becomes an imaginary counterpart to the technologies of infrastructure, a form that shapes and constrains what types of social action and affiliation are possible
    corecore