818 research outputs found

    Mesoscale Light-matter Interactions

    Get PDF
    Mesoscale optical phenomena occur when light interacts with a number of different types of materials, such as biological and chemical systems and fabricated nanostructures. As a framework, mesoscale optics unifies the interpretations of the interaction of light with complex media when the outcome depends significantly upon the scale of the interaction. Most importantly, it guides the process of designing an optical sensing technique by focusing on the nature and amount of information that can be extracted from a measurement. Different aspects of mesoscale optics are addressed in this dissertation which led to the solution of a number of problems in complex media. Dynamical and structural information from complex fluids—such as colloidal suspensions and biological fluids—was obtained by controlling the size of the interaction volume with low coherence interferometry. With this information, material properties such as particle sizes, optical transport coefficients, and viscoelastic characteristics of polymer solutions and blood were determined in natural, realistic conditions that are inaccessible to conventional techniques. The same framework also enabled the development of new, scale-dependent models for several important physical and biological systems. These models were then used to explain the results of some unique measurements. For example, the transport of light in disordered photonic lattices was interpreted as a scale-dependent, diffusive process to explain the anomalous behavior of photon path length distributions through these complex structures. In addition, it was demonstrated how specialized optical measurements and models at the mesoscale enable solutions to fundamental problems in cell biology. Specifically, it was found for the first time that the nature of cell motility changes markedly with the curvature of the substrate that the cells iv move on. This particular work addresses increasingly important questions concerning the nature of cellular responses to external forces and the mechanical properties of their local environment. Besides sensing of properties and modeling behaviors of complex systems, mesoscale optics encompasses the control of material systems as a result of the light-matter interaction. Specific modifications to a material’s structure can occur due to not only an exchange of energy between radiation and a material, but also due to a transfer of momentum. Based on the mechanical action of multiply scattered light on colloidal particles, an optically-controlled active medium that did not require specially tailored particles was demonstrated for the first time. The coupling between the particles and the random electromagnetic field affords new possibilities for controlling mesoscale systems and observing nonequilibrium thermodynamic phenomena

    High-Frequency Volume and Boundary Acoustic Backscatter Fluctuations in Shallow Water

    Get PDF
    Volume and boundary acoustic backscatter envelope fluctuations are characterized from data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz cylindrical array capable of 360° multibeam imaging in the vertical plane perpendicular to its axis. The data are processed to form acoustic backscatter images of the seafloor, sea surface, and horizontal and vertical planes in the volume, which are used to attribute nonhomogeneous spatial distributions of zooplankton, fish, bubbles and bubble clouds, and multiple boundary interactions to the observed backscatter amplitude statistics. Three component Rayleigh mixture probability distribution functions (PDFs) provided the best fit to the empirical distribution functions of seafloor acoustic backscatter. Sea surface and near-surface volume acoustic backscatter PDFsare better described by Rayleigh mixture or log-normal distributions, with the high density portion of the distributions arising from boundary reverberation, and the tails arising from nonhomogeneously distributed scatterers such as bubbles, fish, and zooplankton. PDF fits to the volume and near-surface acoustic backscatter data are poor compared to PDF fits to the boundary backscatter, suggesting that these data may be better described by mixture distributions with component densities from different parametric families. For active sonar target detection, the results demonstrate that threshold detectors which assume Rayleigh distributed envelope fluctuations will experience significantly higher false alarm rates in shallow water environments which are influenced by near-surface microbubbles, aggregations of zooplankton and fish, and boundary reverberation

    Electromagnetic models for ultrasound image processing

    Get PDF
    Speckle noise appears when coherent illumination is employed, as for example Laser, Synthetic Aperture Radar (SAR), Sonar, Magnetic Resonance, X-ray and Ultrasound imagery. Backscattered echoes from the randomly distributed scatterers in the microscopic structure of the medium are the origin of speckle phenomenon, which characterizes coherent imaging with a granular appearance. It can be shown that speckle noise is of multiplicative nature, strongly correlated and more importantly, with non-Gaussian statistics. These characteristics differ greatly from the traditional assumption of white additive Gaussian noise, often taken in image segmentation, filtering, and in general, image processing; which leads to reduction of the methods effectiveness for final image information extraction; therefore, this kind of noise severely impairs human and machine ability to image interpretation. Statistical modeling is of particular relevance when dealing with speckled data in order to obtain efficient image processing algorithms; but, additionally, clinical ultrasound imaging systems employ nonlinear signal processing to reduce the dynamic range of the input echo signal to match the smaller dynamic range of the display device and to emphasize objects with weak backscatter. This reduction in dynamic range is normally achieved through a logarithmic amplifier i.e. logarithmic compression, which selectively compresses large input signals. This kind of nonlinear compression totally changes the statistics of the input envelope signal; and, a closed form expression for the density function of the logarithmic transformed data is usually hard to derive. This thesis is concerned with the statistical distributions of the Log-compressed amplitude signal in coherent imagery, and its main objective is to develop a general statistical model for log-compressed ultrasound B-scan images. The developed model is adapted, making the pertinent physical analogies, from the multiplicative model in Synthetic Aperture Radar (SAR) context. It is shown that the proposed model can successfully describe log-compressed data generated from different models proposed in the specialized ultrasound image processing literature. Also, the model is successfully applied to model in-vivo echo-cardiographic (ultrasound) B-scan images. Necessary theorems are established to account for a rigorous mathematical proof of the validity and generality of the model. Additionally, a physical interpretation of the parameters is given, and the connections between the generalized central limit theorems, the multiplicative model and the compound representations approaches for the different models proposed up-to-date, are established. It is shown that the log-amplifier parameters are included as model parameters and all the model parameters are estimated using moments and maximum likelihood methods. Finally, three applications are developed: speckle noise identification and filtering; segmentation of in vivo echo-cardiographic (ultrasound) B-scan images and a novel approach for heart ejection fraction evaluationEl ruido Speckle aparece cuando se utilizan sistemas de iluminación coherente, como por ejemplo Láser, Radar de Apertura Sintética (SAR), Sonar, Resonancia Magnética, rayos X y ultrasonidos. Los ecos dispersados por los centros dispersores distribuidos al azar en la estructura microscópica del medio son el origen de este fenómeno, que caracteriza las imágenes coherentes con un aspecto granular. Se puede demostrar que el ruido Speckle es de carácter multiplicativo, fuertemente correlacionados y lo más importante, con estadística no Gaussiana. Estas características son muy diferentes de la suposición tradicional de ruido aditivo gaussiano blanco, a menudo asumida en la segmentación de imágenes, filtrado, y en general, en el procesamiento de imágenes; lo cual se traduce en la reducción de la eficacia de los métodos para la extracción de información de la imagen final. La modelización estadística es de particular relevancia cuando se trata con datos Speckle, a fin de obtener algoritmos de procesamiento de imágenes eficientes. Además, el procesamiento no lineal de señales empleado en sistemas clínicos de imágenes por ultrasonido para reducir el rango dinámico de la señal de eco de entrada de manera que coincida con el rango dinámico más pequeño del dispositivo de visualización y resaltar así los objetos con dispersión más débil, modifica radicalmente la estadística de los datos. Esta reducción en el rango dinámico se logra normalmente a través de un amplificador logarítmico es decir, la compresión logarítmica, que comprime selectivamente las señales de entrada y una forma analítica para la expresión de la función de densidad de los datos transformados logarítmicamente es por lo general difícil de derivar. Esta tesis se centra en las distribuciones estadísticas de la amplitud de la señal comprimida logarítmicamente en las imágenes coherentes, y su principal objetivo es el desarrollo de un modelo estadístico general para las imágenes por ultrasonido comprimidas logarítmicamente en modo-B. El modelo desarrollado se adaptó, realizando las analogías físicas relevantes, del modelo multiplicativo en radares de apertura sintética (SAR). El Modelo propuesto puede describir correctamente los datos comprimidos logarítmicamente a partir datos generados con los diferentes modelos propuestos en la literatura especializada en procesamiento de imágenes por ultrasonido. Además, el modelo se aplica con éxito para modelar ecocardiografías en vivo. Se enuncian y demuestran los teoremas necesarios para dar cuenta de una demostración matemática rigurosa de la validez y generalidad del modelo. Además, se da una interpretación física de los parámetros y se establecen las conexiones entre el teorema central del límite generalizado, el modelo multiplicativo y la composición de distribuciones para los diferentes modelos propuestos hasta a la fecha. Se demuestra además que los parámetros del amplificador logarítmico se incluyen dentro de los parámetros del modelo y se estiman usando los métodos estándar de momentos y máxima verosimilitud. Por último, tres aplicaciones se desarrollan: filtrado de ruido Speckle, segmentación de ecocardiografías y un nuevo enfoque para la evaluación de la fracción de eyección cardiaca.Postprint (published version

    Enhancing ultraviolet spontaneous emission with a designed quantum vacuum

    Get PDF
    We determine how to alter the properties of the quantum vacuum at ultraviolet wavelengths to simultaneously enhance the spontaneous transition rates and the far field detection rate of quantum emitters. We find the response of several complex nanostructures in the 200 − 400 nm range, where many organic molecules have fluorescent responses, using an analytic decomposition of the electromagnetic response in terms of continuous spectra of plane waves and discrete sets of modes. Coupling a nanorod with an aluminum substrate gives decay rates up to 2.7 × 103 times larger than the decay rate in vacuum and enhancements of 824 for the far field emission into the entire upper semi-space and of 2.04 × 103 for emission within a cone with a 60º semi-angle. This effect is due to both an enhancement of the field at the emitter’s position and a reshaping of the radiation patterns near mode resonances and cannot be obtained by replacing the aluminum substrate with a second nanoparticle or with a fused silica substrate. These large decay rates and far field enhancement factors will be very useful in the detection of fluorescence signals, as these resonances can be shifted by changing the dimensions of th nanorod. Moreover, these nanostructures have potential for nano-lasing because the Q factors of these resonances can reach 107.9, higher than the Q factors observed in nano-lasers

    Scattering of low coherence radiation and applications

    Get PDF
    In an effort to understand complex scattering phenomena, characteristics of optical waves such as polarization, angular spectrum, and temporal coherence have been extensively studied. In this article we will review several applications where the coherence properties of broad-band radiation offer unique sensing and diagnostic capabilities

    Statistics and control of waves in disordered media

    Full text link
    Fundamental concepts in the quasi-one-dimensional geometry of disordered wires and random waveguides in which ideas of scaling and the transmission matrix were first introduced are reviewed. We discuss the use of the transmission matrix to describe the scaling, fluctuations, delay time, density of states, and control of waves propagating through and within disordered systems. Microwave measurements, random matrix theory calculations, and computer simulations are employed to study the statistics of transmission and focusing in single samples and the scaling of the probability distribution of transmission and transmittance in random ensembles. Finally, we explore the disposition of the energy density of transmission eigenchannels inside random media.Comment: 28 Pages, 18 Figures (Review

    Statistical Modeling of SAR Images: A Survey

    Get PDF
    Statistical modeling is essential to SAR (Synthetic Aperture Radar) image interpretation. It aims to describe SAR images through statistical methods and reveal the characteristics of these images. Moreover, statistical modeling can provide a technical support for a comprehensive understanding of terrain scattering mechanism, which helps to develop algorithms for effective image interpretation and creditable image simulation. Numerous statistical models have been developed to describe SAR image data, and the purpose of this paper is to categorize and evaluate these models. We first summarize the development history and the current researching state of statistical modeling, then different SAR image models developed from the product model are mainly discussed in detail. Relevant issues are also discussed. Several promising directions for future research are concluded at last

    Simulations of adaptive optics systems on 30-m-class telescopes

    Get PDF
    In this paper we describe the development of a C++ class library for the simulation of adaptive optics systems. This library includes functionality to simulate the propagation of electromagnetic waves through a randomly generated turbulent atmosphere and through an adaptive optical system. It includes support for extended emitters and laser guide stars, and for different types of wavefront sensors and reconstructors. The library also aims to support parallelization of simulations across symmetric multiprocessor and cluster supercomputers
    • …
    corecore