4,945 research outputs found

    Wind turbine lifetime extension decision-making based on structural health monitoring

    Get PDF
    In this work, structural health monitoring data is applied to underpin a long-term wind farm lifetime extension strategy. Based on the outcome of the technical analysis, the case for an extended lifetime of 15 years is argued. Having established the lifetime extension strategy, the single wind turbine investigated within a wind farm is subjected to a bespoke economic lifetime extension case study. In this case study, the local wind resource is taken into consideration, paired with central, optimistic, and pessimistic operational cost assumptions. Besides a deterministic approach, a stochastic analysis is carried out based on Monte Carlo simulations of selected scenarios. Findings reveal the economic potential to operate profitably in a subsidy-free environment with a P90 levelised cost of energy of ÂŁ25.02 if no component replacement is required within the nacelle and ÂŁ42.53 for a complete replacement of blades, generator, and gearbox

    Test status and experience with the 7.5 megawatt Mod-2 wind turbine cluster

    Get PDF
    The Mod-2 wind turbine cluster is described. The site preparation and construction activities are discussed, and preliminary test results, status, and plans are presented

    Aeronautical Engineering. A continuing bibliography, supplement 115

    Get PDF
    This bibliography lists 273 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1979

    Digital tools for floating offshore wind turbines (FOWT): A state of the art

    Get PDF
    ABSTRACT: Operations and installation on offshore wind and especially floating are complex and difficult actions due to site accessibility and equipment availability. In this regard, digitalization is disrupting the wind section thanks to the development of advanced sensors, automated equipment, computational power, among other. All these allow to optimize and simplify different parts of the offshore wind power plant development (i.e. design, planning, installation, O&M, etc.). This fact is of special interest on maintenance, since the early detection of failures or malfunctions lead to reduced costly corrective maintenance. This paper presents a literature review of current state-of-the-art on the application of digitalization activities which can be applied for floating wind, including typical component failures, monitoring techniques and advanced digital tools as Digital Twin concept and Building Information Models (BIM). Finally, the review paper provides an analysis of existing gaps, needs and challenges of the sector to provide guides on research and innovation to foster offshore wind sector.The research leading to these results has received funding from the European Union’s H2020 Programme under Grant Agreement n◦ 815083 – Corewin

    MOD-0A 200 kW wind turbine generator design and analysis report

    Get PDF
    The design, analysis, and initial performance of the MOD-OA 200 kW wind turbine generator at Clayton, NM is documented. The MOD-OA was designed and built to obtain operation and performance data and experience in utility environments. The project requirements, approach, system description, design requirements, design, analysis, system tests, installation, safety considerations, failure modes and effects analysis, data acquisition, and initial performance for the wind turbine are discussed. The design and analysis of the rotor, drive train, nacelle equipment, yaw drive mechanism and brake, tower, foundation, electricl system, and control systems are presented. The rotor includes the blades, hub, and pitch change mechanism. The drive train includes the low speed shaft, speed increaser, high speed shaft, and rotor brake. The electrical system includes the generator, switchgear, transformer, and utility connection. The control systems are the blade pitch, yaw, and generator control, and the safety system. Manual, automatic, and remote control are discussed. Systems analyses on dynamic loads and fatigue are presented

    DESIGN AND CONSTRUCTION OF A PROTOTYPE SOLAR UPDRAFT CHIMNEY IN ASWAN/EGYPT

    Get PDF
    This work is part of a joint project funded by the Science and Technology Development Fund (STDF) of the Arab republic of Egypt and the Federal Ministry of Education and Research (BMBF) of the Federal Republic of Germany. Continuation of the use of fossil fuels in electricity production systems causes many problems such as: global warming, other environmental concerns, the depletion of fossil fuels reserves and continuing rise in the price of fuels. One of the most promising paths to solve the energy crisis is utilizing the renewable energy resources. In Egypt, high insolation and more than 90 percent available desert lands are two main factors that encourage the full development of solar power plants for thermal and electrical energy production. With an average temperature of about 40 °C for more than half of the year and average annual sunshine of about 3200 hours, which is close to the theoretical maximum annual sunshine hours, Aswan is one of the hottest and sunniest cities in the world. This climatic condition makes the city an ideal place for implementing solar energy harvesting projects from solar updraft tower. Therefore, a Solar Chimney Power Plant (SCPP) is being installed at Aswan City. The chimney height is 20.0 m, its diameter is 1.0m and the collector is a four-sided pyramid, which has a side length of 28.5 m. A mathematical model is used to predict its performance. The model shows that the plant can produce a maximum theoretical power of 2 kW. Moreover, a CFD code is used to analyse the temperature and velocity distribution inside the collector, turbine and chimney at different operating conditions. Static calculations, including dead weight and wind forces on the solar updraft chimney and its solar collector, have been performed for the prototype. Mechanical loading and ambient impact on highly used industrial structures such as chimneys and masts cause lifetime-related deteriorations. Structural degradations occur not only from rare extreme loading events, but often as a result of the ensemble of load effects during the life-time of the structure. A Structural Health Monitoring (SHM), framework for continuous monitoring, is implemented on the solar tower. For the ongoing case study, the types of impacts, the development of the strategic sensor positioning concept, examples of the initially obtained results and further prospects are discussed. Additional wind tunnel tests have been performed to investigate the flow situation underneath the solar collector and inside the transition section. The flow situation in and around the SCPP has been simulated by a combination of the wind tunnel flow and a second flow inside the solar tower. Different wind tunnel velocities and volume flow rates have been measured respectively. Particle Image Velocimetry (PIV) measurements give some indication of the flow situation on the in- and outside of the solar tower and underneath the collector roof. Numerical simulations have been performed with the ANSYS Fluent to validate the experimental tests

    A Critical Review on the Structural Health Monitoring Methods of the Composite Wind Turbine Blades

    Get PDF
    With increasing turbine size, monitoring of blades becomes increasingly im-portant, in order to prevent catastrophic damages and unnecessary mainte-nance, minimize the downtime and labor cost and improving the safety is-sues and reliability. The present work provides a review and classification of various structural health monitoring (SHM) methods as strain measurement utilizing optical fiber sensors and Fiber Bragg Gratings (FBG’s), active/ pas-sive acoustic emission method, vibration‒based method, thermal imaging method and ultrasonic methods, based on the recent investigations and prom-ising novel techniques. Since accuracy, comprehensiveness and cost-effectiveness are the fundamental parameters in selecting the SHM method, a systematically summarized investigation encompassing methods capabilities/ limitations and sensors types, is needed. Furthermore, the damages which are included in the present work are fiber breakage, matrix cracking, delamina-tion, fiber debonding, crack opening at leading/ trailing edge and ice accre-tion. Taking into account the types of the sensors relevant to different SHM methods, the advantages/ capabilities and disadvantages/ limitations of repre-sented methods are nominated and analyzed

    [Report of] Specialist Committee V.4: ocean, wind and wave energy utilization

    No full text
    The committee's mandate was :Concern for structural design of ocean energy utilization devices, such as offshore wind turbines, support structures and fixed or floating wave and tidal energy converters. Attention shall be given to the interaction between the load and the structural response and shall include due consideration of the stochastic nature of the waves, current and wind

    Ultrasonic communications system for health monitoring of hydrokinetic turbine blades

    Get PDF
    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit health data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of Ĺ‚5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines --Abstract, page iii
    • …
    corecore