147 research outputs found

    Advanced Endoscopic Navigation:Surgical Big Data,Methodology,and Applications

    Get PDF
    随着科学技术的飞速发展,健康与环境问题日益成为人类面临的最重大问题之一。信息科学、计算机技术、电子工程与生物医学工程等学科的综合应用交叉前沿课题,研究现代工程技术方法,探索肿瘤癌症等疾病早期诊断、治疗和康复手段。本论文综述了计算机辅助微创外科手术导航、多模态医疗大数据、方法论及其临床应用:从引入微创外科手术导航概念出发,介绍了医疗大数据的术前与术中多模态医学成像方法、阐述了先进微创外科手术导航的核心流程包括计算解剖模型、术中实时导航方案、三维可视化方法及交互式软件技术,归纳了各类微创外科手术方法的临床应用。同时,重点讨论了全球各种手术导航技术在临床应用中的优缺点,分析了目前手术导航领域内的最新技术方法。在此基础上,提出了微创外科手术方法正向数字化、个性化、精准化、诊疗一体化、机器人化以及高度智能化的发展趋势。【Abstract】Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.X.L. acknowledges funding from the Fundamental Research Funds for the Central Universities. T.M.P. acknowledges funding from the Canadian Foundation for Innovation, the Canadian Institutes for Health Research, the National Sciences and Engineering Research Council of Canada, and a grant from Intuitive Surgical Inc

    Autonomous Medical Needle Steering In Vivo

    Full text link
    The use of needles to access sites within organs is fundamental to many interventional medical procedures both for diagnosis and treatment. Safe and accurate navigation of a needle through living tissue to an intra-tissue target is currently often challenging or infeasible due to the presence of anatomical obstacles in the tissue, high levels of uncertainty, and natural tissue motion (e.g., due to breathing). Medical robots capable of automating needle-based procedures in vivo have the potential to overcome these challenges and enable an enhanced level of patient care and safety. In this paper, we show the first medical robot that autonomously navigates a needle inside living tissue around anatomical obstacles to an intra-tissue target. Our system leverages an aiming device and a laser-patterned highly flexible steerable needle, a type of needle capable of maneuvering along curvilinear trajectories to avoid obstacles. The autonomous robot accounts for anatomical obstacles and uncertainty in living tissue/needle interaction with replanning and control and accounts for respiratory motion by defining safe insertion time windows during the breathing cycle. We apply the system to lung biopsy, which is critical in the diagnosis of lung cancer, the leading cause of cancer-related death in the United States. We demonstrate successful performance of our system in multiple in vivo porcine studies and also demonstrate that our approach leveraging autonomous needle steering outperforms a standard manual clinical technique for lung nodule access.Comment: 22 pages, 6 figure

    Pre-clinical validation of virtual bronchoscopy using 3D Slicer

    Get PDF
    Lung cancer still represents the leading cause of cancer-related death, and the long-term survival rate remains low. Computed tomography (CT) is currently the most common imaging modality for lung diseases recognition. The purpose of this work was to develop a simple and easily accessible virtual bronchoscopy system to be coupled with a customized electromagnetic (EM) tracking system for navigation in the lung and which requires as little user interaction as possible, while maintaining high usability. The proposed method has been implemented as an extension to the open-source platform, 3D Slicer. It creates a virtual reconstruction of the airways starting from CT images for virtual navigation. It provides tools for pre-procedural planning and virtual navigation, and it has been optimized for use in combination with a of freedom EM tracking sensor. Performance of the algorithm has been evaluated in ex vivo and in vivo testing. During ex vivo testing, nine volunteer physicians tested the implemented algorithm to navigate three separate targets placed inside a breathing pig lung model. In general, the system proved easy to use and accurate in replicating the clinical setting and seemed to help choose the correct path without any previous experience or image analysis. Two separate animal studies confirmed technical feasibility and usability of the system. This work describes an easily accessible virtual bronchoscopy system for navigation in the lung. The system provides the user with a complete set of tools that facilitate navigation towards user-selected regions of interest. Results from ex vivo and in vivo studies showed that the system opens the way for potential future work with virtual navigation for safe and reliable airway disease diagnosis

    Navigated Ultrasound in Laparoscopic Surgery

    Get PDF

    Kinomic Profiling of Electromagnetic Navigational Bronchoscopy Specimens: A New Approach for Personalized Medicine

    Get PDF
    Purpose Researchers are currently seeking relevant lung cancer biomarkers in order to make informed decisions regarding therapeutic selection for patients in so-called “precision medicine.” However, there are challenges to obtaining adequate lung cancer tissue for molecular analyses. Furthermore, current molecular testing of tumors at the genomic or transcriptomic level are very indirect measures of biological response to a drug, particularly for small molecule inhibitors that target kinases. Kinase activity profiling is therefore theorized to be more reflective of in vivo biology than many current molecular analysis techniques. As a result, this study seeks to prove the feasibility of combining a novel minimally invasive biopsy technique that expands the number of lesions amenable for biopsy with subsequent ex vivo kinase activity analysis. Methods Eight patients with lung lesions of varying location and size were biopsied using the novel electromagnetic navigational bronchoscopy (ENB) technique. Basal kinase activity (kinomic) profiles and ex vivo interrogation of samples in combination with tyrosine kinase inhibitors erlotinib, crizotinib, and lapatinib were performed by PamStation 12 microarray analysis. Results Kinomic profiling qualitatively identified patient specific kinase activity profiles as well as patient and drug specific changes in kinase activity profiles following exposure to inhibitor. Thus, the study has verified the feasibility of ENB as a method for obtaining tissue in adequate quantities for kinomic analysis and has demonstrated the possible use of this tissue acquisition and analysis technique as a method for future study of lung cancer biomarkers. Conclusions We demonstrate the feasibility of using ENB-derived biopsies to perform kinase activity assessment in lung cancer patients

    Novel design and concepts for biopsy in navigated bronchoscopy

    Get PDF
    Bronchoscopy is a minimally invasive intervention with a low risk of complications. If CT-images show suspicious lesions, there may be a need to take a sample of tissue for a definitive diagnosis with a biopsy tool, such as biopsy forceps, cytology brush or transbronchial needles. The success rate of biopsy procedures performed with bronchoscopy is low, i.e. they do not provide a decisive diagnosis and there is often a need for repetitive biopsies. Using an ultrathin bronchoscope and navigation systems will increase the diagnostic yield of a biopsy, from approximately 63% to 73-80% for solitary peripheral lesion > 2 cm. This thesis presents a novel design concept for a biopsy tool and a new step for the biopsy procedure in order to solve some of the challenges and limitations of sampling lung lesions, particularly in the peripheral parts of the lung

    Automated catheter navigation with electromagnetic image guidance

    Get PDF
    This paper describes a novel method of controlling an endoscopic catheter by using an automated catheter tensioning system with the objective of providing clinicians with improved manipulation capabilities within the patient. Catheters are used in many clinical procedures to provide access to the cardiopulmonary system. Control of such catheters is performed manually by the clinicians using a handle, typically actuating a single or opposing set of pull wires. Such catheters are generally actuated in a single plane, requiring the clinician to rotate the catheter handle to navigate the system. The automation system described here allows closed-loop control of a custom bronchial catheter in tandem with an electromagnetic tracking of the catheter tip and image guidance by using a 3D Slicer. An electromechanical drive train applies tension to four pull wires to steer the catheter tip, with the applied force constantly monitored through force sensing load cells. The applied tension is controlled through a PC connected joystick. An electromagnetic sensor embedded in the catheter tip enables constant real-time position tracking, whereas a working channel provides a route for endoscopic instruments. The system is demonstrated and tested in both a breathing lung model and a preclinical animal study. Navigation to predefined targets in the subject's airways by using the joystick while using virtual image guidance and electromagnetic tracking was demonstrated. Average targeting times were 29 and 10 s, respectively, for the breathing lung and live animal studies. This paper presents the first reported remote controlled bronchial working channel catheter utilizing electromagnetic tracking and has many implications for future development in endoscopic and catheter-based procedures

    Towards Robot Autonomy in Medical Procedures Via Visual Localization and Motion Planning

    Get PDF
    Robots performing medical procedures with autonomous capabilities have the potential to positively effect patient care and healthcare system efficiency. These benefits can be realized by autonomous robots facilitating novel procedures, increasing operative efficiency, standardizing intra- and inter-physician performance, democratizing specialized care, and focusing the physician’s time on subtasks that best leverage their expertise. However, enabling medical robots to act autonomously in a procedural environment is extremely challenging. The deforming and unstructured nature of the environment, the lack of features in the anatomy, and sensor size constraints coupled with the millimeter level accuracy required for safe medical procedures introduce a host of challenges not faced by robots operating in structured environments such as factories or warehouses. Robot motion planning and localization are two fundamental abilities for enabling robot autonomy. Motion planning methods compute a sequence of safe and feasible motions for a robot to accomplish a specified task, where safe and feasible are defined by constraints with respect to the robot and its environment. Localization methods estimate the position and orientation of a robot in its environment. Developing such methods for medical robots that overcome the unique challenges in procedural environments is critical for enabling medical robot autonomy. In this dissertation, I developed and evaluated motion planning and localization algorithms towards robot autonomy in medical procedures. A majority of my work was done in the context of an autonomous medical robot built for enhanced lung nodule biopsy. First, I developed a dataset of medical environments spanning various organs and procedures to foster future research into medical robots and automation. I used this data in my own work described throughout this dissertation. Next, I used motion planning to characterize the capabilities of the lung nodule biopsy robot compared to existing clinical tools and I highlighted trade-offs in robot design considerations. Then, I conducted a study to experimentally demonstrate the benefits of the autonomous lung robot in accessing otherwise hard-to-reach lung nodules. I showed that the robot enables access to lung regions beyond the reach of existing clinical tools with millimeter-level accuracy sufficient for accessing the smallest clinically operable nodules. Next, I developed a localization method to estimate the bronchoscope’s position and orientation in the airways with respect to a preoperatively planned needle insertion pose. The method can be used by robotic bronchoscopy systems and by traditional manually navigated bronchoscopes. The method is designed to overcome challenges with tissue motion and visual homogeneity in the airways. I demonstrated the success of this method in simulated lungs undergoing respiratory motion and showed the method’s ability to generalize across patients.Doctor of Philosoph

    Open-source virtual bronchoscopy for image guided navigation

    Get PDF
    This thesis describes the development of an open-source system for virtual bronchoscopy used in combination with electromagnetic instrument tracking. The end application is virtual navigation of the lung for biopsy of early stage cancer nodules. The open-source platform 3D Slicer was used for creating freely available algorithms for virtual bronchscopy. Firstly, the development of an open-source semi-automatic algorithm for prediction of solitary pulmonary nodule malignancy is presented. This approach may help the physician decide whether to proceed with biopsy of the nodule. The user-selected nodule is segmented in order to extract radiological characteristics (i.e., size, location, edge smoothness, calcification presence, cavity wall thickness) which are combined with patient information to calculate likelihood of malignancy. The overall accuracy of the algorithm is shown to be high compared to independent experts' assessment of malignancy. The algorithm is also compared with two different predictors, and our approach is shown to provide the best overall prediction accuracy. The development of an airway segmentation algorithm which extracts the airway tree from surrounding structures on chest Computed Tomography (CT) images is then described. This represents the first fundamental step toward the creation of a virtual bronchoscopy system. Clinical and ex-vivo images are used to evaluate performance of the algorithm. Different CT scan parameters are investigated and parameters for successful airway segmentation are optimized. Slice thickness is the most affecting parameter, while variation of reconstruction kernel and radiation dose is shown to be less critical. Airway segmentation is used to create a 3D rendered model of the airway tree for virtual navigation. Finally, the first open-source virtual bronchoscopy system was combined with electromagnetic tracking of the bronchoscope for the development of a GPS-like system for navigating within the lungs. Tools for pre-procedural planning and for helping with navigation are provided. Registration between the lungs of the patient and the virtually reconstructed airway tree is achieved using a landmark-based approach. In an attempt to reduce difficulties with registration errors, we also implemented a landmark-free registration method based on a balanced airway survey. In-vitro and in-vivo testing showed good accuracy for this registration approach. The centreline of the 3D airway model is extracted and used to compensate for possible registration errors. Tools are provided to select a target for biopsy on the patient CT image, and pathways from the trachea towards the selected targets are automatically created. The pathways guide the physician during navigation, while distance to target information is updated in real-time and presented to the user. During navigation, video from the bronchoscope is streamed and presented to the physician next to the 3D rendered image. The electromagnetic tracking is implemented with 5 DOF sensing that does not provide roll rotation information. An intensity-based image registration approach is implemented to rotate the virtual image according to the bronchoscope's rotations. The virtual bronchoscopy system is shown to be easy to use and accurate in replicating the clinical setting, as demonstrated in the pre-clinical environment of a breathing lung method. Animal studies were performed to evaluate the overall system performance
    corecore