25 research outputs found

    On the synthesis and processing of high quality audio signals by parallel computers

    Get PDF
    This work concerns the application of new computer architectures to the creation and manipulation of high-quality audio bandwidth signals. The configuration of both the hardware and software in such systems falls under consideration in the three major sections which present increasing levels of algorithmic concurrency. In the first section, the programs which are described are distributed in identical copies across an array of processing elements; these programs run autonomously, generating data independently, but with control parameters peculiar to each copy: this type of concurrency is referred to as isonomic}The central section presents a structure which distributes tasks across an arbitrary network of processors; the flow of control in such a program is quasi- indeterminate, and controlled on a demand basis by the rate of completion of the slave tasks and their irregular interaction with the master. Whilst that interaction is, in principle, deterministic, it is also data-dependent; the dynamic nature of task allocation demands that no a priori knowledge of the rate of task completion be required. This type of concurrency is called dianomic? Finally, an architecture is described which will support a very high level of algorithmic concurrency. The programs which make efficient use of such a machine are designed not by considering flow of control, but by considering flow of data. Each atomic algorithmic unit is made as simple as possible, which results in the extensive distribution of a program over very many processing elements. Programs designed by considering only the optimum data exchange routes are said to exhibit systolic^ concurrency. Often neglected in the study of system design are those provisions necessary for practical implementations. It was intended to provide users with useful application programs in fulfilment of this study; the target group is electroacoustic composers, who use digital signal processing techniques in the context of musical composition. Some of the algorithms in use in this field are highly complex, often requiring a quantity of processing for each sample which exceeds that currently available even from very powerful computers. Consequently, applications tend to operate not in 'real-time' (where the output of a system responds to its input apparently instantaneously), but by the manipulation of sounds recorded digitally on a mass storage device. The first two sections adopt existing, public-domain software, and seek to increase its speed of execution significantly by parallel techniques, with the minimum compromise of functionality and ease of use. Those chosen are the general- purpose direct synthesis program CSOUND, from M.I.T., and a stand-alone phase vocoder system from the C.D.P..(^4) In each case, the desired aim is achieved: to increase speed of execution by two orders of magnitude over the systems currently in use by composers. This requires substantial restructuring of the programs, and careful consideration of the best computer architectures on which they are to run concurrently. The third section examines the rationale behind the use of computers in music, and begins with the implementation of a sophisticated electronic musical instrument capable of a degree of expression at least equal to its acoustic counterparts. It seems that the flexible control of such an instrument demands a greater computing resource than the sound synthesis part. A machine has been constructed with the intention of enabling the 'gestural capture' of performance information in real-time; the structure of this computer, which has one hundred and sixty high-performance microprocessors running in parallel, is expounded; and the systolic programming techniques required to take advantage of such an array are illustrated in the Occam programming language

    Fibre-ribbon pipeline ring network with distributed global deadline scheduling and deterministic user services

    No full text
    This paper introduces a novel, fair medium access protocol for a pipelined optical ring network. The protocol provides global deadline scheduling of packets. Requests for sending packets are sent by the nodes in the network to a master node. The master uses the deadline information in the requests to determine which packet is most urgent. Arbitration is done in two steps, the collection and distribution phases. The protocol is therefore called two-cycle medium access (TCMA). The network is best suited for LANs and SANs (system area networks) such as a high speed network in a cluster of computers or in an embedded parallel computer. Offered services in this network include best effort messages, guarantee seeking messages, real-time virtual channels, functions used in parallel processing. These are possible without additional higher level protocols. A simulation analysis of the network with the protocol is presented. Further analysis shows minimum slot length and fairness of the protocol.©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</p

    Fibre-ribbon pipeline ring network with distributed global deadline scheduling and deterministic user services

    No full text

    Mechanical Engineering

    Get PDF
    The book substantially offers the latest progresses about the important topics of the "Mechanical Engineering" to readers. It includes twenty-eight excellent studies prepared using state-of-art methodologies by professional researchers from different countries. The sections in the book comprise of the following titles: power transmission system, manufacturing processes and system analysis, thermo-fluid systems, simulations and computer applications, and new approaches in mechanical engineering education and organization systems

    Systematic Approaches for Telemedicine and Data Coordination for COVID-19 in Baja California, Mexico

    Get PDF
    Conference proceedings info: ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologies Raleigh, HI, United States, March 24-26, 2023 Pages 529-542We provide a model for systematic implementation of telemedicine within a large evaluation center for COVID-19 in the area of Baja California, Mexico. Our model is based on human-centric design factors and cross disciplinary collaborations for scalable data-driven enablement of smartphone, cellular, and video Teleconsul-tation technologies to link hospitals, clinics, and emergency medical services for point-of-care assessments of COVID testing, and for subsequent treatment and quar-antine decisions. A multidisciplinary team was rapidly created, in cooperation with different institutions, including: the Autonomous University of Baja California, the Ministry of Health, the Command, Communication and Computer Control Center of the Ministry of the State of Baja California (C4), Colleges of Medicine, and the College of Psychologists. Our objective is to provide information to the public and to evaluate COVID-19 in real time and to track, regional, municipal, and state-wide data in real time that informs supply chains and resource allocation with the anticipation of a surge in COVID-19 cases. RESUMEN Proporcionamos un modelo para la implementación sistemática de la telemedicina dentro de un gran centro de evaluación de COVID-19 en el área de Baja California, México. Nuestro modelo se basa en factores de diseño centrados en el ser humano y colaboraciones interdisciplinarias para la habilitación escalable basada en datos de tecnologías de teleconsulta de teléfonos inteligentes, celulares y video para vincular hospitales, clínicas y servicios médicos de emergencia para evaluaciones de COVID en el punto de atención. pruebas, y para el tratamiento posterior y decisiones de cuarentena. Rápidamente se creó un equipo multidisciplinario, en cooperación con diferentes instituciones, entre ellas: la Universidad Autónoma de Baja California, la Secretaría de Salud, el Centro de Comando, Comunicaciones y Control Informático. de la Secretaría del Estado de Baja California (C4), Facultades de Medicina y Colegio de Psicólogos. Nuestro objetivo es proporcionar información al público y evaluar COVID-19 en tiempo real y rastrear datos regionales, municipales y estatales en tiempo real que informan las cadenas de suministro y la asignación de recursos con la anticipación de un aumento de COVID-19. 19 casos.ICICT 2023: 2023 The 6th International Conference on Information and Computer Technologieshttps://doi.org/10.1007/978-981-99-3236-

    Nova combinação de hardware e de software para veículos de desporto automóvel baseada no processamento directo de funções gráficas

    Get PDF
    Doutoramento em Engenharia EletrónicaThe main motivation for the work presented here began with previously conducted experiments with a programming concept at the time named "Macro". These experiments led to the conviction that it would be possible to build a system of engine control from scratch, which could eliminate many of the current problems of engine management systems in a direct and intrinsic way. It was also hoped that it would minimize the full range of software and hardware needed to make a final and fully functional system. Initially, this paper proposes to make a comprehensive survey of the state of the art in the specific area of software and corresponding hardware of automotive tools and automotive ECUs. Problems arising from such software will be identified, and it will be clear that practically all of these problems stem directly or indirectly from the fact that we continue to make comprehensive use of extremely long and complex "tool chains". Similarly, in the hardware, it will be argued that the problems stem from the extreme complexity and inter-dependency inside processor architectures. The conclusions are presented through an extensive list of "pitfalls" which will be thoroughly enumerated, identified and characterized. Solutions will also be proposed for the various current issues and for the implementation of these same solutions. All this final work will be part of a "proof-of-concept" system called "ECU2010". The central element of this system is the before mentioned "Macro" concept, which is an graphical block representing one of many operations required in a automotive system having arithmetic, logic, filtering, integration, multiplexing functions among others. The end result of the proposed work is a single tool, fully integrated, enabling the development and management of the entire system in one simple visual interface. Part of the presented result relies on a hardware platform fully adapted to the software, as well as enabling high flexibility and scalability in addition to using exactly the same technology for ECU, data logger and peripherals alike. Current systems rely on a mostly evolutionary path, only allowing online calibration of parameters, but never the online alteration of their own automotive functionality algorithms. By contrast, the system developed and described in this thesis had the advantage of following a "clean-slate" approach, whereby everything could be rethought globally. In the end, out of all the system characteristics, "LIVE-Prototyping" is the most relevant feature, allowing the adjustment of automotive algorithms (eg. Injection, ignition, lambda control, etc.) 100% online, keeping the engine constantly working, without ever having to stop or reboot to make such changes. This consequently eliminates any "turnaround delay" typically present in current automotive systems, thereby enhancing the efficiency and handling of such systems.A principal motivação para o trabalho que conduziu a esta tese residiu na constatação de que os actuais métodos de modelação de centralinas automóveis conduzem a significativos problemas de desenvolvimento e manutenção. Como resultado dessa constatação, o objectivo deste trabalho centrou-se no desenvolvimento de um conceito de arquitectura que rompe radicalmente com os modelos state-of-the-art e que assenta num conjunto de conceitos que vieram a ser designados de "Macro" e "Celular ECU". Com este modelo pretendeu-se simultaneamente minimizar a panóplia de software e de hardware necessários à obtenção de uma sistema funcional final. Inicialmente, esta tese propõem-se fazer um levantamento exaustivo do estado da arte na área específica do software e correspondente hardware das ferramentas e centralinas automóveis. Os problemas decorrentes de tal software serão identificados e, dessa identificação deverá ficar claro, que praticamente todos esses problemas têm origem directa ou indirecta no facto de se continuar a fazer um uso exaustivo de "tool chains" extremamente compridas e complexas. De forma semelhante, no hardware, os problemas têm origem na extrema complexidade e inter-dependência das arquitecturas dos processadores. As consequências distribuem-se por uma extensa lista de "pitfalls" que também serão exaustivamente enumeradas, identificadas e caracterizadas. São ainda propostas soluções para os diversos problemas actuais e correspondentes implementações dessas mesmas soluções. Todo este trabalho final faz parte de um sistema "proof-of-concept" designado "ECU2010". O elemento central deste sistema é o já referido conceito de “Macro”, que consiste num bloco gráfico que representa uma de muitas operações necessárias num sistema automóvel, como sejam funções aritméticas, lógicas, de filtragem, de integração, de multiplexagem, entre outras. O resultado final do trabalho proposto assenta numa única ferramenta, totalmente integrada que permite o desenvolvimento e gestão de todo o sistema de forma simples numa única interface visual. Parte do resultado apresentado assenta numa plataforma hardware totalmente adaptada ao software, bem como na elevada flexibilidade e escalabilidade, para além de permitir a utilização de exactamente a mesma tecnologia quer para a centralina, como para o datalogger e para os periféricos. Os sistemas actuais assentam num percurso maioritariamente evolutivo, apenas permitindo a calibração online de parâmetros, mas nunca a alteração online dos próprios algoritmos das funcionalidades automóveis. Pelo contrário, o sistema desenvolvido e descrito nesta tese apresenta a vantagem de seguir um "clean-slate approach", pelo que tudo pode ser globalmente repensado. No final e para além de todas as restantes características, o “LIVE-PROTOTYPING” é a funcionalidade mais relevante, ao permitir alterar algoritmos automóveis (ex: injecção, ignição, controlo lambda, etc.) de forma 100% online, mantendo o motor constantemente a trabalhar e sem nunca ter de o parar ou re-arrancar para efectuar tais alterações. Isto elimina consequentemente qualquer "turnaround delay" tipicamente presente em qualquer sistema automóvel actual, aumentando de forma significativa a eficiência global do sistema e da sua utilização

    Pertanika Journal of Science & Technology

    Get PDF

    Pertanika Journal of Science & Technology

    Get PDF
    corecore