34 research outputs found

    Some special solutions to the Hyperbolic NLS equation

    Full text link
    The Hyperbolic Nonlinear Schrodinger equation (HypNLS) arises as a model for the dynamics of three-dimensional narrowband deep water gravity waves. In this study, the Petviashvili method is exploited to numerically compute bi-periodic time-harmonic solutions of the HypNLS equation. In physical space they represent non-localized standing waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them using symbolic dynamics and the language of substitutions. Finally, the dynamics of a slightly perturbed standing wave is numerically investigated by means a highly acccurate Fourier solver.Comment: 33 pages, 10 figures, 70 references. Other author's papers can be found at http://www.denys-dutykh.com

    Proceedings of JAC 2010. Journées Automates Cellulaires

    Get PDF
    The second Symposium on Cellular Automata “Journ´ees Automates Cellulaires” (JAC 2010) took place in Turku, Finland, on December 15-17, 2010. The first two conference days were held in the Educarium building of the University of Turku, while the talks of the third day were given onboard passenger ferry boats in the beautiful Turku archipelago, along the route Turku–Mariehamn–Turku. The conference was organized by FUNDIM, the Fundamentals of Computing and Discrete Mathematics research center at the mathematics department of the University of Turku. The program of the conference included 17 submitted papers that were selected by the international program committee, based on three peer reviews of each paper. These papers form the core of these proceedings. I want to thank the members of the program committee and the external referees for the excellent work that have done in choosing the papers to be presented in the conference. In addition to the submitted papers, the program of JAC 2010 included four distinguished invited speakers: Michel Coornaert (Universit´e de Strasbourg, France), Bruno Durand (Universit´e de Provence, Marseille, France), Dora Giammarresi (Universit` a di Roma Tor Vergata, Italy) and Martin Kutrib (Universit¨at Gie_en, Germany). I sincerely thank the invited speakers for accepting our invitation to come and give a plenary talk in the conference. The invited talk by Bruno Durand was eventually given by his co-author Alexander Shen, and I thank him for accepting to make the presentation with a short notice. Abstracts or extended abstracts of the invited presentations appear in the first part of this volume. The program also included several informal presentations describing very recent developments and ongoing research projects. I wish to thank all the speakers for their contribution to the success of the symposium. I also would like to thank the sponsors and our collaborators: the Finnish Academy of Science and Letters, the French National Research Agency project EMC (ANR-09-BLAN-0164), Turku Centre for Computer Science, the University of Turku, and Centro Hotel. Finally, I sincerely thank the members of the local organizing committee for making the conference possible. These proceedings are published both in an electronic format and in print. The electronic proceedings are available on the electronic repository HAL, managed by several French research agencies. The printed version is published in the general publications series of TUCS, Turku Centre for Computer Science. We thank both HAL and TUCS for accepting to publish the proceedings.Siirretty Doriast

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy

    Excursions at the Interface of Topological Phases of Matter and Quantum Error Correction

    Get PDF
    Topological quantum error-correcting codes are a family of stabilizer codes that are built using a lattice of qubits covering some manifold. The stabilizers of the code are local with respect to the underlying lattice, and logical information is encoded in the non-local degrees of freedom. The locality of stabilizers in these codes makes them especially suitable for experiments. From the condensed matter perspective, their code space corresponds to the ground state subspace of a local Hamiltonian belonging to a non-trivial topological phase of matter. The stabilizers of the code correspond to the Hamiltonian terms, and errors can be thought of as excitations above the ground state subspace. Conversely, one can use fixed point Hamiltonian of a topological phase of matter to define a topological quantum error-correcting code.This close connection has motivated numerous studies which utilize insights from one view- point to address questions in the other. This thesis further explores the possibilities in this di- rection. In the first two chapters, we present novel schemes to implement logical gates, which are motivated by viewing topological quantum error-correcting codes as topological phases of matter. In the third chapter, we show how the quantum error correction perspective could be used to realize robust topological entanglement phases in monitored random quantum circuits. And in the last chapter, we explore the possibility of extending this connection beyond topological quan- tum error-correcting codes. In particular, we introduce an order parameter for detecting k-local non-trivial states, which can be thought of as a generalization of topological states that includes codewords of any quantum error-correcting code
    corecore