52,251 research outputs found

    On the Weight Distribution of Codes over Finite Rings

    Full text link
    Let R > S be finite Frobenius rings for which there exists a trace map T from R onto S as left S modules. Let C:= {x -> T(ax + bf(x)) : a,b in R}. Then C is an S-linear subring-subcode of a left linear code over R. We consider functions f for which the homogeneous weight distribution of C can be computed. In particular, we give constructions of codes over integer modular rings and commutative local Frobenius that have small spectra.Comment: 18 p

    Duality Preserving Gray Maps for Codes over Rings

    Full text link
    Given a finite ring AA which is a free left module over a subring RR of AA, two types of RR-bases, pseudo-self-dual bases (similar to trace orthogonal bases) and symmetric bases, are defined which in turn are used to define duality preserving maps from codes over AA to codes over RR. Both types of bases are generalizations of similar concepts for fields. Many illustrative examples are given to shed light on the advantages to such mappings as well as their abundance

    Some Ulam's reconstruction problems for quantum states

    Full text link
    Provided a complete set of putative kk-body reductions of a multipartite quantum state, can one determine if a joint state exists? We derive necessary conditions for this to be true. In contrast to what is known as the quantum marginal problem, we consider a setting where the labeling of the subsystems is unknown. The problem can be seen in analogy to Ulam's reconstruction conjecture in graph theory. The conjecture - still unsolved - claims that every graph on at least three vertices can uniquely be reconstructed from the set of its vertex-deleted subgraphs. When considering quantum states, we demonstrate that the non-existence of joint states can, in some cases, already be inferred from a set of marginals having the size of just more than half of the parties. We apply these methods to graph states, where many constraints can be evaluated by knowing the number of stabilizer elements of certain weights that appear in the reductions. This perspective links with constraints that were derived in the context of quantum error-correcting codes and polynomial invariants. Some of these constraints can be interpreted as monogamy-like relations that limit the correlations arising from quantum states. Lastly, we provide an answer to Ulam's reconstruction problem for generic quantum states.Comment: 22 pages, 3 figures, v2: significantly revised final versio

    Cyclic LRC Codes, binary LRC codes, and upper bounds on the distance of cyclic codes

    Full text link
    We consider linear cyclic codes with the locality property, or locally recoverable codes (LRC codes). A family of LRC codes that generalize the classical construction of Reed-Solomon codes was constructed in a recent paper by I. Tamo and A. Barg (IEEE Trans. Inform. Theory, no. 8, 2014). In this paper we focus on optimal cyclic codes that arise from this construction. We give a characterization of these codes in terms of their zeros, and observe that there are many equivalent ways of constructing optimal cyclic LRC codes over a given field. We also study subfield subcodes of cyclic LRC codes (BCH-like LRC codes) and establish several results about their locality and minimum distance. The locality parameter of a cyclic code is related to the dual distance of this code, and we phrase our results in terms of upper bounds on the dual distance.Comment: 12pp., submitted for publication. An extended abstract of this submission was posted earlier as arXiv:1502.01414 and was published in Proceedings of the 2015 IEEE International Symposium on Information Theory, Hong Kong, China, June 14-19, 2015, pp. 1262--126

    Cyclic LRC Codes and their Subfield Subcodes

    Full text link
    We consider linear cyclic codes with the locality property, or locally recoverable codes (LRC codes). A family of LRC codes that generalizes the classical construction of Reed-Solomon codes was constructed in a recent paper by I. Tamo and A. Barg (IEEE Transactions on Information Theory, no. 8, 2014; arXiv:1311.3284). In this paper we focus on the optimal cyclic codes that arise from the general construction. We give a characterization of these codes in terms of their zeros, and observe that there are many equivalent ways of constructing optimal cyclic LRC codes over a given field. We also study subfield subcodes of cyclic LRC codes (BCH-like LRC codes) and establish several results about their locality and minimum distance.Comment: Submitted for publicatio

    Low-complexity quantum codes designed via codeword-stabilized framework

    Full text link
    We consider design of the quantum stabilizer codes via a two-step, low-complexity approach based on the framework of codeword-stabilized (CWS) codes. In this framework, each quantum CWS code can be specified by a graph and a binary code. For codes that can be obtained from a given graph, we give several upper bounds on the distance of a generic (additive or non-additive) CWS code, and the lower Gilbert-Varshamov bound for the existence of additive CWS codes. We also consider additive cyclic CWS codes and show that these codes correspond to a previously unexplored class of single-generator cyclic stabilizer codes. We present several families of simple stabilizer codes with relatively good parameters.Comment: 12 pages, 3 figures, 1 tabl
    • …
    corecore