2,672 research outputs found

    Looking Beyond Appearances: Synthetic Training Data for Deep CNNs in Re-identification

    Full text link
    Re-identification is generally carried out by encoding the appearance of a subject in terms of outfit, suggesting scenarios where people do not change their attire. In this paper we overcome this restriction, by proposing a framework based on a deep convolutional neural network, SOMAnet, that additionally models other discriminative aspects, namely, structural attributes of the human figure (e.g. height, obesity, gender). Our method is unique in many respects. First, SOMAnet is based on the Inception architecture, departing from the usual siamese framework. This spares expensive data preparation (pairing images across cameras) and allows the understanding of what the network learned. Second, and most notably, the training data consists of a synthetic 100K instance dataset, SOMAset, created by photorealistic human body generation software. Synthetic data represents a good compromise between realistic imagery, usually not required in re-identification since surveillance cameras capture low-resolution silhouettes, and complete control of the samples, which is useful in order to customize the data w.r.t. the surveillance scenario at-hand, e.g. ethnicity. SOMAnet, trained on SOMAset and fine-tuned on recent re-identification benchmarks, outperforms all competitors, matching subjects even with different apparel. The combination of synthetic data with Inception architectures opens up new research avenues in re-identification.Comment: 14 page

    Learngene: Inheriting Condensed Knowledge from the Ancestry Model to Descendant Models

    Full text link
    During the continuous evolution of one organism's ancestry, its genes accumulate extensive experiences and knowledge, enabling newborn descendants to rapidly adapt to their specific environments. Motivated by this observation, we propose a novel machine learning paradigm Learngene to enable learning models to incorporate three key characteristics of genes. (i) Accumulating: the knowledge is accumulated during the continuous learning of an ancestry model. (ii) Condensing: the extensive accumulated knowledge is condensed into a much more compact information piece, i.e., learngene. (iii) Inheriting: the condensed learngene is inherited to make it easier for descendant models to adapt to new environments. Since accumulating has been studied in well-established paradigms like large-scale pre-training and lifelong learning, we focus on condensing and inheriting, which induces three key issues and we provide the preliminary solutions to these issues in this paper: (i) Learngene Form: the learngene is set to a few integral layers that can preserve significance. (ii) Learngene Condensing: we identify which layers among the ancestry model have the most similarity as one pseudo descendant model. (iii) Learngene Inheriting: to construct distinct descendant models for the specific downstream tasks, we stack some randomly initialized layers to the learngene layers. Extensive experiments across various settings, including using different network architectures like Vision Transformer (ViT) and Convolutional Neural Networks (CNNs) on different datasets, are carried out to confirm four advantages of Learngene: it makes the descendant models 1) converge more quickly, 2) exhibit less sensitivity to hyperparameters, 3) perform better, and 4) require fewer training samples to converge
    corecore