6,075 research outputs found

    Digital few-mode fiber multiplexer using multiplane light conversion

    Get PDF
    We propose an all-optical data-driven technique for space division multiplexing in few-mode fibers. A digital twin was realized by multiplane light conversion and neural networks. It is promising for a digitally programmable multiplexer in fiber communication

    Optimal RWA for SDM Optical Network under Dynamic Traffic

    Get PDF
    With the rapid increase in demand for data transmission in our generation where Internet and cloud concepts play an essential role, it has become mandatory that we handle data most efficiently. A promising solution to overcome the capacity crunch problem which is so evident in future is applications of Space Division Multiplexing, where we explore the remaining unused domain that is the spectral and spatial domain. Space Division Multiplexing using multi-core fibers (MCF), and few-mode fibers (FMF) has been studied in our work to enhance the data-carrying capacity of optical fibers while minimizing the transmission cost per bit. The objective is to develop a path protection scheme to handle communication requests in the data center (DC) networks using elastic optical networking and space division multiplexing (SDM). Our approach to this problem is to 1) determining the initial allocation of light path on the topology, 2) possible spectrum allocation using the flex-grid flexible-SDM model, 3) choose the best possible route to minimize the number of subcarriers needed for data transfer. We propose to evaluate the developed Integer Linear Programming (ILP) formulation based on this scheme

    Robust Data Center Network Design using Space Division Multiplexing

    Get PDF
    With the ever-increasing demand for data transmission in our generation where Internet and cloud concepts play a vital role, it has become essential that we handle data in a most efficient way. A possible solution to overcome the capacity crunch problem which is so evident in future, is applications of Space Division Multiplexing, where we explore the remaining unused domain that is the spatial domain. Space Division Multiplexing using multi-core fibers (MCFs), and few-mode fibers (FMFs) has been studied in our work to enhance the data-carrying capacity of optical fibers while minimizing the transmission cost per bit. The objective of our work is to develop a path protection scheme to handle communication requests in data center (DC) networks using elastic optical networking and space division multiplexing (SDM). Our approach to this problem is to 1) determine a dedicated primary and backup path, 2) possible allocation of spectrum using the flex-grid fixed-SDM model, 3) choose the best possible modulation format to minimize the number of subcarriers needed for data transfer, 4) measure the cost of the resources required to handle the new requests. We propose to evaluate the developed Integer Linear Programming (ILP) formulation based on this scheme, considering the possibility of disasters. We study the impact of the design on the cost of the solution, hence explore whether it promotes significant resource savings

    Optical Fiber Communication with Vortex Modes

    Get PDF
    Internet data traffic’s capacity is rapidly reaching limits imposed by optical fiber nonlinearities [5]. Optical vortices appear in high order fiber optical mode. In this thesis, we consider multimode fibers (MMFs) that are capable of transmitting a few vortex modes. Certain types of fibers have a spatial dimension leads to space-division-multiplexing (SDM), where information is transmitted with cores of multicore fibers (MCFs) or mode-division-multiplexing (MDM), where information is transmitted via different modes of multimode fibers (MMFs). SDM by employing few-mode fibers in optical networks is expected to efficiently enhance the capacity and overcome the capacity crunch owing to fast increasing capacity demand. For generation of vortex modes, we investigate computer-generated holograms (CGHs) that are fabricated by interference technique. These components constitute the potential backbone for the high-speed network of the future. To address the capacity crunch, we study the possibility of applying modes with OAM or helicity in optical fiber communication systems. First, novel fibers (known as vortex fibers) are investigated for their maximum transmission speed and energy guiding capacities. We study the mode properties of these fibers with wave transfer matrix (T-matrix) method such that the number of guided modes, material and waveguide dispersions are determined. We optimize these fibers by changing their sizes and structures with various concentrations and types of doping for the index profile. Then an optimized profile is determined for guiding of vortex or higher order modes with a minimum total dispersion and maximum bandwidth to address the capacity crunch. During this process, the waveguide dispersion is computed from numerical results that are applied for generating fitting equations. Similarly, fitting equations are formulated for estimation of number of modes in vortex fibers. Then, the use of computer generated hologram (CGH) technique for encoding vortex modes onto signals is investigated

    Model-aware Deep Learning Method for Raman Amplification in Few-Mode Fibers

    Get PDF
    One of the most promising solutions to overcome the capacity limit of current optical fiber links is space-division multiplexing, which allows the transmission on various cores of multi-core fibers or modes of few-mode fibers. In order to realize such systems, suitable optical fiber amplifiers must be designed. In single mode fibers, Raman amplification has shown significant advantages over doped fiber amplifiers due to its low-noise and spectral flexibility. For these reasons, its use in next-generation space-division multiplexing transmission systems is being studied extensively. In this work, we propose a deep learning method that uses automatic differentiation to embed a complete few-mode Raman amplification model in the training process of a neural network to identify the optimal pump wavelengths and power allocation scheme to design both flat and tilted gain profiles. Compared to other machine learning methods, the proposed technique allows to train the neural network on ideal gain profiles, removing the need to compute a dataset that accurately covers the space of Raman gains we are interested in. The ability to directly target a selected region of the space of possible gains allows the method to be easily generalized to any type of Raman gain profiles, while also being more robust when increasing the number of pumps, modes, and the amplification bandwidth. This approach is tested on a 70 km long 4-mode fiber transmitting over the C+L band with various numbers of Raman pumps in the counter-propagating scheme, targeting gain profiles with an average gain in the interval from 5 dB to 15 dB and total tilt in the interval from 1.425 dB to 1.425 dB. We achieve wavelengthand mode-dependent gain fluctuations lower than 0.04 dB and 0.02 dB per dB of gain, respectively

    Mode Coupling in Space-division Multiplexed Systems

    Get PDF
    Even though fiber-optic communication systems have been engineered to nearly approach the Shannon capacity limit, they still cannot meet the exponentially-growing bandwidth demand of the Internet. Space-division multiplexing (SDM) has attracted considerable attention in recent years due to its potential to address this capacity crunch. In SDM, the transmission channels support more than one spatial mode, each of which can provide the same capacity as a single-mode fiber. To make SDM practical, crosstalk among modes must be effectively managed. This dissertation presents three techniques for crosstalk management for SDM. In some cases such as intra-datacenter interconnects, even though mode crosstalk cannot be completely avoided, crosstalk among mode groups can be suppressed in properly-designed few-mode fibers to support mode group-multiplexed transmission. However, in most cases, mode coupling is unavoidable. In free-space optical (FSO) communication, mode coupling due to turbulence manifests as wavefront distortions. Since there is almost no modal dispersion in FSO, we demonstrate the use of few-mode pre-amplified receivers to mitigate the effect of turbulence without using adaptive optics. In fiber-optic communication, multi-mode fibers or long-haul few-mode fibers not only suffer from mode crosstalk but also large modal dispersion, which can only be compensated electronically using multiple-input-multiple-output (MIMO) digital signal processing (DSP). In this case, we take the counterintuitive approach of introducing strong mode coupling to reduce modal group delay and DSP complexity

    Design and characterization of few-mode fibers for space division multiplexing on fiber eigenmodes

    Get PDF
    La croissance constante et exponentielle de la demande de trafic de données Internet conduit nos réseaux de télécommunications optiques, principalement composés de liaisons de fibre monomode, à une pénurie imminente de capacité. La limite non linéaire de la fibre monomode, prédite par la théorie de l'information, ne laisse aucune place à l'amélioration de la capacité de communication par fibre optique. Dans ce contexte, la prochaine technologie de rupture dans les transmissions optiques à haute capacité devrait être le multiplexage par répartition spatiale (SDM). La base du SDM consiste à utiliser différents canaux spatiaux d'une seule fibre optique pour transmettre des données indépendantes. Le SDM fournit ainsi une augmentation de la capacité de transport de données d'un facteur qui dépend du nombre de chemins spatiaux qui sont établis. Une façon de réaliser le SDM consiste à utiliser des fibres faiblement multimodes (FMF) spécialisées, conçues pour présenter un couplage faible entre les modes guidés. Un traitement MIMO réduit peut alors être utilisé pour annuler le couplage résiduel des modes. Dans cette thèse, nous donnons tout d'abord un aperçu des progrès récents du multiplexage par répartition de modes (MDM). Les modes à polarisation linéaire (LP), les modes de moment angulaire orbital (OAM) et les modes vectoriels représentent différentes bases de modes orthogonaux possibles dans la fibre. Nous comparons les travaux utilisant ces modes en termes de conception de fibre proposée, nombre de modes, complexité MIMO et résultats expérimentaux de transmission de données. Ensuite, nous introduisons la modélisation de la fibre optique réalisée avec les solveurs numériques de COMSOL Multiphysics, et nous discutons de quelques travaux utilisant cette modélisation de fibre. Nous proposons une nouvelle FMF, composée d'un noyau hautement elliptique et d'une tranchée adjacente ajoutée pour réduire la perte de courbure des modes d'ordre supérieur. La fibre est conçue et optimisée pour prendre en charge cinq modes spatiaux avec une dégénérescence de polarisation double, pour un total de dix canaux. La fibre proposée montre une différence d'indice effectif entre les modes spatiaux supérieure à 1 × 10-3sur la bande C. Ensuite, nous fabriquons la fibre avec un procédé standard de dépôt chimique en phase vapeur modifié (MCVD), et nous caractérisons la fibre en laboratoire. La caractérisation expérimentale a révélé que la fibre présente une propriété de maintien de polarisation. Ceci est obtenu grâce à la combinaison de la structure centrale asymétrique et de la contrainte thermique introduite lors de la fabrication. Nous mesurons la biréfringence avec une technique de réseau de Bragg inscrit dans la fibre (FBG). En incluant la contrainte thermique dans notre modélisation de fibre, un bon accord est obtenu entre la biréfringence simulée et mesurée. Nous avons réussi à effectuer la première transmission de données sur la fibre proposée, en transmettant deux signaux QPSK sur les deux polarisations de chaque mode spatial, sans utiliser de traitement MIMO. Enfin, nous présentons une amélioration d'une technique d'interférométrie hyperfréquence (MICT) précédemment proposée, afin de mesurer expérimentalement la perte en fonction du mode (MDL) des groupes de modes FMF. En conclusion, nous résumons les résultats et présentons les perspectives d'avenir de cette recherche. En résumé, de nouveaux FMF doivent être étudiés si nous voulons résoudre la pénurie imminente de capacité de nos technologies système. Les résultats de cette thèse indique que le FMF à maintien de polarisation proposée dans cette recherche représente une amélioration significative dans le domaine des systèmes de transmission MDM sans MIMO pour des liaisons de communication courtes ; c’est-à-dire distribuant des données sur une longueur inférieure à 10 km. Nous espérons que ce travail conduira au développement de nouveaux composants SD Mutilisant cette fibre, tels que de nouveaux amplificateurs à fibre, ou de nouveaux multiplexeurs/démultiplexeurs, comme par exemple des coupleurs en mode fibre fusionnée ou des dispositifs photoniques au silicium.The constant and exponential growth of Internet data traffic demand is driving our optical telecommunication networks, mainly composed of single-mode fiber links, to an imminent capacity shortage. The nonlinear limit of the single-mode fiber, predicted by the information theory, leave no room for optical fiber communication capacity improvements. In this direction, the next disruptive technology in high-capacity communication transmissions is expected to be Space Division Multiplexing (SDM). The basic of SDM consists of using different spatial channels of a single optical fiber to transmit information data. SDM thus provides an increase in the data-carrying capacity by a factor that depends on the number of spatial paths that are established. A way to realize SDM is through the use of specialty few-mode fibers (FMFs), designed to have a weak coupling between the guided modes. A reduced MIMO processing can be used to undo the residual mode coupling. In this thesis, we firstly give an overview of the recent progress in mode division multiplexing (MDM). Linearly polarized (LP) modes, orbital angular momentum (OAM) modes and vector modes represent the possible orthogonal modes guided into the fiber. We compare works, making use of those modes, in terms of proposed fiber design, number of modes, MIMO complexity and data transmission experiments. After that, we introduce the optical fiber modelling performed with the numerical solvers of COMSOL Multiphysics, and we discuss some works making use of this fiber modelling. Next, we propose a novel FMF, composed of a highly elliptical core and a surrounding trench added to reduce the bending loss of the higher order modes. The fiber is designed and optimized to support five spatial modes with twofold polarization degeneracy, for a total of ten channels. The proposed fiber shows an effective index difference between the spatial modes higher than 1×10-3 over the C-band. Afterwards, we fabricate the fiber with standard modified chemical vapor deposition (MCVD) process, and we characterize the fiber in the laboratory. The experimental characterization revealed the polarization maintaining properties of the fiber. This is obtained with the combination of the asymmetric core structure and the thermal stress introduced during the fabrication. We measure the birefringence with a fiber Bragg grating (FBG) technique, and we included the thermal stress in our fiber modelling. A good agreement was found between the simulated and measured birefringence. We successfully demonstrate the first data transmission over the proposed fiber, by transmitting two QPSK signals over the two polarizations of each spatial mode, without the use of any MIMO processing. Lastly, we present an improvement of a previously proposed microwave interferometric technique (MICT), in order to experimentally measure the mode dependent loss (MDL) of FMF mode groups. Finally, we present the conclusions and the future perspectives of this research. To conclude, novel FMFs need to be investigated if we want to solve the imminent capacity shortage of our system technologies. We truly believe that the polarization-maintaining FMF proposed in this research represents a significant improvement to the field of MIMO-free MDM transmission systems for short communication links, distributing data over length less than 10 km. We hope that this work will drive the development of new SDM components making use of this fiber, such as new fiber amplifiers, or new mux/demux, as for example fused fiber mode couplers or silicon photonic devices

    Quantum information processing with space-division multiplexing optical fibres

    Full text link
    The optical fibre is an essential tool for our communication infrastructure since it is the main transmission channel for optical communications. The latest major advance in optical fibre technology is spatial division multiplexing (SDM), where new fibre designs and components establish multiple co-existing data channels based on light propagation over distinct transverse optical modes. Simultaneously, there have been many recent developments in the field of quantum information processing (QIP), with novel protocols and devices in areas such as computing, communication and metrology. Here, we review recent works implementing QIP protocols with SDM optical fibres, and discuss new possibilities for manipulating quantum systems based on this technology.Comment: Originally submitted version. Please see published version for improved layout, new tables and updated references following review proces

    Multi-element fiber technology for space-division multiplexing applications

    No full text
    A novel technological approach to space division multiplexing (SDM) based on the use of multiple individual fibers embedded in a common polymer coating material is presented, which is referred to as Multi-Element Fiber (MEF). The approach ensures ultralow crosstalk between spatial channels and allows for cost-effective ways of realizing multi-spatial channel amplification and signal multiplexing/demultiplexing. Both the fabrication and characterization of a passive 3-element MEF for data transmission, and an active 5-element erbium/ytterbium doped MEF for cladding-pumped optical amplification that uses one of the elements as an integrated pump delivery fiber is reported. Finally, both components were combined to emulate an optical fiber network comprising SDM transmission lines and amplifiers, and illustrate the compatibility of the approach with existing installed single-mode WDM fiber systems
    • …
    corecore