18,212 research outputs found

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks

    Full text link
    We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate "few-shot" models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.Comment: To be published in NAACL 201

    Joint Intermodal and Intramodal Label Transfers for Extremely Rare or Unseen Classes

    Full text link
    In this paper, we present a label transfer model from texts to images for image classification tasks. The problem of image classification is often much more challenging than text classification. On one hand, labeled text data is more widely available than the labeled images for classification tasks. On the other hand, text data tends to have natural semantic interpretability, and they are often more directly related to class labels. On the contrary, the image features are not directly related to concepts inherent in class labels. One of our goals in this paper is to develop a model for revealing the functional relationships between text and image features as to directly transfer intermodal and intramodal labels to annotate the images. This is implemented by learning a transfer function as a bridge to propagate the labels between two multimodal spaces. However, the intermodal label transfers could be undermined by blindly transferring the labels of noisy texts to annotate images. To mitigate this problem, we present an intramodal label transfer process, which complements the intermodal label transfer by transferring the image labels instead when relevant text is absent from the source corpus. In addition, we generalize the inter-modal label transfer to zero-shot learning scenario where there are only text examples available to label unseen classes of images without any positive image examples. We evaluate our algorithm on an image classification task and show the effectiveness with respect to the other compared algorithms.Comment: The paper has been accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence. It will apear in a future issu

    Ridge Regression, Hubness, and Zero-Shot Learning

    Full text link
    This paper discusses the effect of hubness in zero-shot learning, when ridge regression is used to find a mapping between the example space to the label space. Contrary to the existing approach, which attempts to find a mapping from the example space to the label space, we show that mapping labels into the example space is desirable to suppress the emergence of hubs in the subsequent nearest neighbor search step. Assuming a simple data model, we prove that the proposed approach indeed reduces hubness. This was verified empirically on the tasks of bilingual lexicon extraction and image labeling: hubness was reduced with both of these tasks and the accuracy was improved accordingly.Comment: To be presented at ECML/PKDD 201
    corecore