2,023 research outputs found

    BadPrompt: Backdoor Attacks on Continuous Prompts

    Full text link
    The prompt-based learning paradigm has gained much research attention recently. It has achieved state-of-the-art performance on several NLP tasks, especially in the few-shot scenarios. While steering the downstream tasks, few works have been reported to investigate the security problems of the prompt-based models. In this paper, we conduct the first study on the vulnerability of the continuous prompt learning algorithm to backdoor attacks. We observe that the few-shot scenarios have posed a great challenge to backdoor attacks on the prompt-based models, limiting the usability of existing NLP backdoor methods. To address this challenge, we propose BadPrompt, a lightweight and task-adaptive algorithm, to backdoor attack continuous prompts. Specially, BadPrompt first generates candidate triggers which are indicative for predicting the targeted label and dissimilar to the samples of the non-targeted labels. Then, it automatically selects the most effective and invisible trigger for each sample with an adaptive trigger optimization algorithm. We evaluate the performance of BadPrompt on five datasets and two continuous prompt models. The results exhibit the abilities of BadPrompt to effectively attack continuous prompts while maintaining high performance on the clean test sets, outperforming the baseline models by a large margin. The source code of BadPrompt is publicly available at https://github.com/papersPapers/BadPrompt.Comment: Accepted at NeurIPS 202

    A Survey on Open-Vocabulary Detection and Segmentation: Past, Present, and Future

    Full text link
    As the most fundamental tasks of computer vision, object detection and segmentation have made tremendous progress in the deep learning era. Due to the expensive manual labeling, the annotated categories in existing datasets are often small-scale and pre-defined, i.e., state-of-the-art detectors and segmentors fail to generalize beyond the closed-vocabulary. To resolve this limitation, the last few years have witnessed increasing attention toward Open-Vocabulary Detection (OVD) and Segmentation (OVS). In this survey, we provide a comprehensive review on the past and recent development of OVD and OVS. To this end, we develop a taxonomy according to the type of task and methodology. We find that the permission and usage of weak supervision signals can well discriminate different methodologies, including: visual-semantic space mapping, novel visual feature synthesis, region-aware training, pseudo-labeling, knowledge distillation-based, and transfer learning-based. The proposed taxonomy is universal across different tasks, covering object detection, semantic/instance/panoptic segmentation, 3D scene and video understanding. In each category, its main principles, key challenges, development routes, strengths, and weaknesses are thoroughly discussed. In addition, we benchmark each task along with the vital components of each method. Finally, several promising directions are provided to stimulate future research

    Improving Small Footprint Few-shot Keyword Spotting with Supervision on Auxiliary Data

    Full text link
    Few-shot keyword spotting (FS-KWS) models usually require large-scale annotated datasets to generalize to unseen target keywords. However, existing KWS datasets are limited in scale and gathering keyword-like labeled data is costly undertaking. To mitigate this issue, we propose a framework that uses easily collectible, unlabeled reading speech data as an auxiliary source. Self-supervised learning has been widely adopted for learning representations from unlabeled data; however, it is known to be suitable for large models with enough capacity and is not practical for training a small footprint FS-KWS model. Instead, we automatically annotate and filter the data to construct a keyword-like dataset, LibriWord, enabling supervision on auxiliary data. We then adopt multi-task learning that helps the model to enhance the representation power from out-of-domain auxiliary data. Our method notably improves the performance over competitive methods in the FS-KWS benchmark.Comment: Interspeech 202

    NTU RGB+D 120: A Large-Scale Benchmark for 3D Human Activity Understanding

    Full text link
    Research on depth-based human activity analysis achieved outstanding performance and demonstrated the effectiveness of 3D representation for action recognition. The existing depth-based and RGB+D-based action recognition benchmarks have a number of limitations, including the lack of large-scale training samples, realistic number of distinct class categories, diversity in camera views, varied environmental conditions, and variety of human subjects. In this work, we introduce a large-scale dataset for RGB+D human action recognition, which is collected from 106 distinct subjects and contains more than 114 thousand video samples and 8 million frames. This dataset contains 120 different action classes including daily, mutual, and health-related activities. We evaluate the performance of a series of existing 3D activity analysis methods on this dataset, and show the advantage of applying deep learning methods for 3D-based human action recognition. Furthermore, we investigate a novel one-shot 3D activity recognition problem on our dataset, and a simple yet effective Action-Part Semantic Relevance-aware (APSR) framework is proposed for this task, which yields promising results for recognition of the novel action classes. We believe the introduction of this large-scale dataset will enable the community to apply, adapt, and develop various data-hungry learning techniques for depth-based and RGB+D-based human activity understanding. [The dataset is available at: http://rose1.ntu.edu.sg/Datasets/actionRecognition.asp]Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    ConES: Concept Embedding Search for Parameter Efficient Tuning Large Vision Language Models

    Full text link
    Large pre-trained vision-language models have shown great prominence in transferring pre-acquired knowledge to various domains and downstream tasks with appropriate prompting or tuning. Existing prevalent tuning methods can be generally categorized into three genres: 1) prompt engineering by creating suitable prompt texts, which is time-consuming and requires domain expertise; 2) or simply fine-tuning the whole model, which is extremely inefficient; 3) prompt tuning through parameterized prompt embeddings with the text encoder. Nevertheless, all methods rely on the text encoder for bridging the modality gap between vision and language. In this work, we question the necessity of the cumbersome text encoder for a more lightweight and efficient tuning paradigm as well as more representative prompt embeddings closer to the image representations. To achieve this, we propose a Concept Embedding Search (ConES) approach by optimizing prompt embeddings -- without the need of the text encoder -- to capture the 'concept' of the image modality through a variety of task objectives. By dropping the text encoder, we are able to significantly speed up the learning process, \eg, from about an hour to just ten minutes in our experiments for personalized text-to-image generation without impairing the generation quality. Moreover, our proposed approach is orthogonal to current existing tuning methods since the searched concept embeddings can be further utilized in the next stage of fine-tuning the pre-trained large models for boosting performance. Extensive experiments show that our approach can beat the prompt tuning and textual inversion methods in a variety of downstream tasks including objection detection, instance segmentation, and image generation. Our approach also shows better generalization capability for unseen concepts in specialized domains, such as the medical domain

    Open-vocabulary Semantic Segmentation with Frozen Vision-Language Models

    Full text link
    When trained at a sufficient scale, self-supervised learning has exhibited a notable ability to solve a wide range of visual or language understanding tasks. In this paper, we investigate simple, yet effective approaches for adapting the pre-trained foundation models to the downstream task of interest, namely, open-vocabulary semantic segmentation. To this end, we make the following contributions: (i) we introduce Fusioner, with a lightweight, transformer-based fusion module, that pairs the frozen visual representation with language concept through a handful of image segmentation data. As a consequence, the model gains the capability of zero-shot transfer to segment novel categories; (ii) without loss of generality, we experiment on a broad range of self-supervised models that have been pre-trained with different schemes, e.g. visual-only models (MoCo v3, DINO), language-only models (BERT), visual-language model (CLIP), and show that, the proposed fusion approach is effective to any pair of visual and language models, even those pre-trained on a corpus of uni-modal data; (iii) we conduct thorough ablation studies to analyze the critical components in our proposed Fusioner, while evaluating on standard benchmarks, e.g. PASCAL-5i and COCO-20i , it surpasses existing state-of-the-art models by a large margin, despite only being trained on frozen visual and language features; (iv) to measure the model's robustness on learning visual-language correspondence, we further evaluate on synthetic dataset, named Mosaic-4, where images are constructed by mosaicking the samples from FSS-1000. Fusioner demonstrates superior performance over previous models.Comment: BMVC 2022 Ora

    CT-BERT: Learning Better Tabular Representations Through Cross-Table Pre-training

    Full text link
    Tabular data -- also known as structured data -- is one of the most common data forms in existence, thanks to the stable development and scaled deployment of database systems in the last few decades. At present however, despite the blast brought by large pre-trained models in other domains such as ChatGPT or SAM, how can we extract common knowledge across tables at a scale that may eventually lead to generalizable representation for tabular data remains a full blank. Indeed, there have been a few works around this topic. Most (if not all) of them are limited in the scope of a single table or fixed form of a schema. In this work, we first identify the crucial research challenges behind tabular data pre-training, particularly towards the cross-table scenario. We position the contribution of this work in two folds: (i)-we collect and curate nearly 2k high-quality tabular datasets, each of which is guaranteed to possess clear semantics, clean labels, and other necessary meta information. (ii)-we propose a novel framework that allows cross-table pre-training dubbed as CT-BERT. Noticeably, in light of pioneering the scaled cross-table training, CT-BERT is fully compatible with both supervised and self-supervised schemes, where the specific instantiation of CT-BERT is very much dependent on the downstream tasks. We further propose and implement a contrastive-learning-based and masked table modeling (MTM) objective into CT-BERT, that is inspired from computer vision and natural language processing communities but sophistically tailored to tables. The extensive empirical results on 15 datasets demonstrate CT-BERT's state-of-the-art performance, where both its supervised and self-supervised setups significantly outperform the prior approaches

    PRE: Vision-Language Prompt Learning with Reparameterization Encoder

    Full text link
    Large pre-trained vision-language models such as CLIP have demonstrated great potential in zero-shot transferability to downstream tasks. However, to attain optimal performance, the manual selection of prompts is necessary to improve alignment between the downstream image distribution and the textual class descriptions. This manual prompt engineering is the major challenge for deploying such models in practice since it requires domain expertise and is extremely time-consuming. To avoid non-trivial prompt engineering, recent work Context Optimization (CoOp) introduced the concept of prompt learning to the vision domain using learnable textual tokens. While CoOp can achieve substantial improvements over manual prompts, its learned context is worse generalizable to wider unseen classes within the same dataset. In this work, we present Prompt Learning with Reparameterization Encoder (PRE) - a simple and efficient method that enhances the generalization ability of the learnable prompt to unseen classes while maintaining the capacity to learn Base classes. Instead of directly optimizing the prompts, PRE employs a prompt encoder to reparameterize the input prompt embeddings, enhancing the exploration of task-specific knowledge from few-shot samples. Experiments and extensive ablation studies on 8 benchmarks demonstrate that our approach is an efficient method for prompt learning. Specifically, PRE achieves a notable enhancement of 5.60% in average accuracy on New classes and 3% in Harmonic mean compared to CoOp in the 16-shot setting, all achieved within a good training time.Comment: 8 pages excluding References and Appendi

    SciRepEval: A Multi-Format Benchmark for Scientific Document Representations

    Full text link
    Learned representations of scientific documents can serve as valuable input features for downstream tasks, without the need for further fine-tuning. However, existing benchmarks for evaluating these representations fail to capture the diversity of relevant tasks. In response, we introduce SciRepEval, the first comprehensive benchmark for training and evaluating scientific document representations. It includes 25 challenging and realistic tasks, 11 of which are new, across four formats: classification, regression, ranking and search. We then use the benchmark to study and improve the generalization ability of scientific document representation models. We show how state-of-the-art models struggle to generalize across task formats, and that simple multi-task training fails to improve them. However, a new approach that learns multiple embeddings per document, each tailored to a different format, can improve performance. We experiment with task-format-specific control codes and adapters in a multi-task setting and find that they outperform the existing single-embedding state-of-the-art by up to 1.5 points absolute.Comment: 21 pages, 2 figures, 9 tables. For associated code, see https://github.com/allenai/scirepeva
    corecore