5,574 research outputs found

    FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation

    Full text link
    Over the past few years, we have witnessed the success of deep learning in image recognition thanks to the availability of large-scale human-annotated datasets such as PASCAL VOC, ImageNet, and COCO. Although these datasets have covered a wide range of object categories, there are still a significant number of objects that are not included. Can we perform the same task without a lot of human annotations? In this paper, we are interested in few-shot object segmentation where the number of annotated training examples are limited to 5 only. To evaluate and validate the performance of our approach, we have built a few-shot segmentation dataset, FSS-1000, which consists of 1000 object classes with pixelwise annotation of ground-truth segmentation. Unique in FSS-1000, our dataset contains significant number of objects that have never been seen or annotated in previous datasets, such as tiny daily objects, merchandise, cartoon characters, logos, etc. We build our baseline model using standard backbone networks such as VGG-16, ResNet-101, and Inception. To our surprise, we found that training our model from scratch using FSS-1000 achieves comparable and even better results than training with weights pre-trained by ImageNet which is more than 100 times larger than FSS-1000. Both our approach and dataset are simple, effective, and easily extensible to learn segmentation of new object classes given very few annotated training examples. Dataset is available at https://github.com/HKUSTCV/FSS-1000

    A Novel BiLevel Paradigm for Image-to-Image Translation

    Full text link
    Image-to-image (I2I) translation is a pixel-level mapping that requires a large number of paired training data and often suffers from the problems of high diversity and strong category bias in image scenes. In order to tackle these problems, we propose a novel BiLevel (BiL) learning paradigm that alternates the learning of two models, respectively at an instance-specific (IS) and a general-purpose (GP) level. In each scene, the IS model learns to maintain the specific scene attributes. It is initialized by the GP model that learns from all the scenes to obtain the generalizable translation knowledge. This GP initialization gives the IS model an efficient starting point, thus enabling its fast adaptation to the new scene with scarce training data. We conduct extensive I2I translation experiments on human face and street view datasets. Quantitative results validate that our approach can significantly boost the performance of classical I2I translation models, such as PG2 and Pix2Pix. Our visualization results show both higher image quality and more appropriate instance-specific details, e.g., the translated image of a person looks more like that person in terms of identity
    • …
    corecore