980 research outputs found

    Few-shot Class-incremental Audio Classification Using Stochastic Classifier

    Full text link
    It is generally assumed that number of classes is fixed in current audio classification methods, and the model can recognize pregiven classes only. When new classes emerge, the model needs to be retrained with adequate samples of all classes. If new classes continually emerge, these methods will not work well and even infeasible. In this study, we propose a method for fewshot class-incremental audio classification, which continually recognizes new classes and remember old ones. The proposed model consists of an embedding extractor and a stochastic classifier. The former is trained in base session and frozen in incremental sessions, while the latter is incrementally expanded in all sessions. Two datasets (NS-100 and LS-100) are built by choosing samples from audio corpora of NSynth and LibriSpeech, respectively. Results show that our method exceeds four baseline ones in average accuracy and performance dropping rate. Code is at https://github.com/vinceasvp/meta-sc.Comment: 5 pages, 3 figures, 4 tables. Accepted for publication in INTERSPEECH 202

    A Graph Isomorphism Network with Weighted Multiple Aggregators for Speech Emotion Recognition

    Full text link
    Speech emotion recognition (SER) is an essential part of human-computer interaction. In this paper, we propose an SER network based on a Graph Isomorphism Network with Weighted Multiple Aggregators (WMA-GIN), which can effectively handle the problem of information confusion when neighbour nodes' features are aggregated together in GIN structure. Moreover, a Full-Adjacent (FA) layer is adopted for alleviating the over-squashing problem, which is existed in all Graph Neural Network (GNN) structures, including GIN. Furthermore, a multi-phase attention mechanism and multi-loss training strategy are employed to avoid missing the useful emotional information in the stacked WMA-GIN layers. We evaluated the performance of our proposed WMA-GIN on the popular IEMOCAP dataset. The experimental results show that WMA-GIN outperforms other GNN-based methods and is comparable to some advanced non-graph-based methods by achieving 72.48% of weighted accuracy (WA) and 67.72% of unweighted accuracy (UA).Comment: Accepted by Interspeech 202

    Cut-Based Graph Learning Networks to Discover Compositional Structure of Sequential Video Data

    Full text link
    Conventional sequential learning methods such as Recurrent Neural Networks (RNNs) focus on interactions between consecutive inputs, i.e. first-order Markovian dependency. However, most of sequential data, as seen with videos, have complex dependency structures that imply variable-length semantic flows and their compositions, and those are hard to be captured by conventional methods. Here, we propose Cut-Based Graph Learning Networks (CB-GLNs) for learning video data by discovering these complex structures of the video. The CB-GLNs represent video data as a graph, with nodes and edges corresponding to frames of the video and their dependencies respectively. The CB-GLNs find compositional dependencies of the data in multilevel graph forms via a parameterized kernel with graph-cut and a message passing framework. We evaluate the proposed method on the two different tasks for video understanding: Video theme classification (Youtube-8M dataset) and Video Question and Answering (TVQA dataset). The experimental results show that our model efficiently learns the semantic compositional structure of video data. Furthermore, our model achieves the highest performance in comparison to other baseline methods.Comment: 8 pages, 3 figures, Association for the Advancement of Artificial Intelligence (AAAI2020). arXiv admin note: substantial text overlap with arXiv:1907.0170
    • …
    corecore