1,509 research outputs found

    Stochastic Substitute Training: A Gray-box Approach to Craft Adversarial Examples Against Gradient Obfuscation Defenses

    Full text link
    It has been shown that adversaries can craft example inputs to neural networks which are similar to legitimate inputs but have been created to purposely cause the neural network to misclassify the input. These adversarial examples are crafted, for example, by calculating gradients of a carefully defined loss function with respect to the input. As a countermeasure, some researchers have tried to design robust models by blocking or obfuscating gradients, even in white-box settings. Another line of research proposes introducing a separate detector to attempt to detect adversarial examples. This approach also makes use of gradient obfuscation techniques, for example, to prevent the adversary from trying to fool the detector. In this paper, we introduce stochastic substitute training, a gray-box approach that can craft adversarial examples for defenses which obfuscate gradients. For those defenses that have tried to make models more robust, with our technique, an adversary can craft adversarial examples with no knowledge of the defense. For defenses that attempt to detect the adversarial examples, with our technique, an adversary only needs very limited information about the defense to craft adversarial examples. We demonstrate our technique by applying it against two defenses which make models more robust and two defenses which detect adversarial examples.Comment: Accepted by AISec '18: 11th ACM Workshop on Artificial Intelligence and Security. Source code at https://github.com/S-Mohammad-Hashemi/SS

    QuSecNets: Quantization-based Defense Mechanism for Securing Deep Neural Network against Adversarial Attacks

    Full text link
    Adversarial examples have emerged as a significant threat to machine learning algorithms, especially to the convolutional neural networks (CNNs). In this paper, we propose two quantization-based defense mechanisms, Constant Quantization (CQ) and Trainable Quantization (TQ), to increase the robustness of CNNs against adversarial examples. CQ quantizes input pixel intensities based on a "fixed" number of quantization levels, while in TQ, the quantization levels are "iteratively learned during the training phase", thereby providing a stronger defense mechanism. We apply the proposed techniques on undefended CNNs against different state-of-the-art adversarial attacks from the open-source \textit{Cleverhans} library. The experimental results demonstrate 50%-96% and 10%-50% increase in the classification accuracy of the perturbed images generated from the MNIST and the CIFAR-10 datasets, respectively, on commonly used CNN (Conv2D(64, 8x8) - Conv2D(128, 6x6) - Conv2D(128, 5x5) - Dense(10) - Softmax()) available in \textit{Cleverhans} library

    Adversarial content manipulation for analyzing and improving model robustness

    Get PDF
    The recent rapid progress in machine learning systems has opened up many real-world applications --- from recommendation engines on web platforms to safety critical systems like autonomous vehicles. A model deployed in the real-world will often encounter inputs far from its training distribution. For example, a self-driving car might come across a black stop sign in the wild. To ensure safe operation, it is vital to quantify the robustness of machine learning models to such out-of-distribution data before releasing them into the real-world. However, the standard paradigm of benchmarking machine learning models with fixed size test sets drawn from the same distribution as the training data is insufficient to identify these corner cases efficiently. In principle, if we could generate all valid variations of an input and measure the model response, we could quantify and guarantee model robustness locally. Yet, doing this with real world data is not scalable. In this thesis, we propose an alternative, using generative models to create synthetic data variations at scale and test robustness of target models to these variations. We explore methods to generate semantic data variations in a controlled fashion across visual and text modalities. We build generative models capable of performing controlled manipulation of data like changing visual context, editing appearance of an object in images or changing writing style of text. Leveraging these generative models we propose tools to study robustness of computer vision systems to input variations and systematically identify failure modes. In the text domain, we deploy these generative models to improve diversity of image captioning systems and perform writing style manipulation to obfuscate private attributes of the user. Our studies quantifying model robustness explore two kinds of input manipulations, model-agnostic and model-targeted. The model-agnostic manipulations leverage human knowledge to choose the kinds of changes without considering the target model being tested. This includes automatically editing images to remove objects not directly relevant to the task and create variations in visual context. Alternatively, in the model-targeted approach the input variations performed are directly adversarially guided by the target model. For example, we adversarially manipulate the appearance of an object in the image to fool an object detector, guided by the gradients of the detector. Using these methods, we measure and improve the robustness of various computer vision systems -- specifically image classification, segmentation, object detection and visual question answering systems -- to semantic input variations.Der schnelle Fortschritt von Methoden des maschinellen Lernens hat viele neue Anwendungen ermöglicht – von Recommender-Systemen bis hin zu sicherheitskritischen Systemen wie autonomen Fahrzeugen. In der realen Welt werden diese Systeme oft mit Eingaben außerhalb der Verteilung der Trainingsdaten konfrontiert. Zum Beispiel könnte ein autonomes Fahrzeug einem schwarzen Stoppschild begegnen. Um sicheren Betrieb zu gewährleisten, ist es entscheidend, die Robustheit dieser Systeme zu quantifizieren, bevor sie in der Praxis eingesetzt werden. Aktuell werden diese Modelle auf festen Eingaben von derselben Verteilung wie die Trainingsdaten evaluiert. Allerdings ist diese Strategie unzureichend, um solche Ausnahmefälle zu identifizieren. Prinzipiell könnte die Robustheit “lokal” bestimmt werden, indem wir alle zulässigen Variationen einer Eingabe generieren und die Ausgabe des Systems überprüfen. Jedoch skaliert dieser Ansatz schlecht zu echten Daten. In dieser Arbeit benutzen wir generative Modelle, um synthetische Variationen von Eingaben zu erstellen und so die Robustheit eines Modells zu überprüfen. Wir erforschen Methoden, die es uns erlauben, kontrolliert semantische Änderungen an Bild- und Textdaten vorzunehmen. Wir lernen generative Modelle, die kontrollierte Manipulation von Daten ermöglichen, zum Beispiel den visuellen Kontext zu ändern, die Erscheinung eines Objekts zu bearbeiten oder den Schreibstil von Text zu ändern. Basierend auf diesen Modellen entwickeln wir neue Methoden, um die Robustheit von Bilderkennungssystemen bezüglich Variationen in den Eingaben zu untersuchen und Fehlverhalten zu identifizieren. Im Gebiet von Textdaten verwenden wir diese Modelle, um die Diversität von sogenannten Automatische Bildbeschriftung-Modellen zu verbessern und Schreibtstil-Manipulation zu erlauben, um private Attribute des Benutzers zu verschleiern. Um die Robustheit von Modellen zu quantifizieren, werden zwei Arten von Eingabemanipulationen untersucht: Modell-agnostische und Modell-spezifische Manipulationen. Modell-agnostische Manipulationen basieren auf menschlichem Wissen, um bestimmte Änderungen auszuwählen, ohne das entsprechende Modell miteinzubeziehen. Dies beinhaltet das Entfernen von für die Aufgabe irrelevanten Objekten aus Bildern oder Variationen des visuellen Kontextes. In dem alternativen Modell-spezifischen Ansatz werden Änderungen vorgenommen, die für das Modell möglichst ungünstig sind. Zum Beispiel ändern wir die Erscheinung eines Objekts um ein Modell der Objekterkennung täuschen. Dies ist durch den Gradienten des Modells möglich. Mithilfe dieser Werkzeuge können wir die Robustheit von Systemen zur Bildklassifizierung oder -segmentierung, Objekterkennung und Visuelle Fragenbeantwortung quantifizieren und verbessern

    Presentation Attack Detection in Facial Biometric Authentication

    Get PDF
    Biometric systems are referred to those structures that enable recognizing an individual, or specifically a characteristic, using biometric data and mathematical algorithms. These are known to be widely employed in various organizations and companies, mostly as authentication systems. Biometric authentic systems are usually much more secure than a classic one, however they also have some loopholes. Presentation attacks indicate those attacks which spoof the biometric systems or sensors. The presentation attacks covered in this project are: photo attacks and deepfake attacks. In the case of photo attacks, it is observed that interactive action check like Eye Blinking proves efficient in detecting liveness. The Convolutional Neural Network (CNN) model trained on the dataset gave 95% accuracy. In the case of deepfake attacks, it is found out that the deepfake videos and photos are generated by complex Generative Adversarial Networks (GANs) and are difficult for human eye to figure out. However, through experiments, it was observed that comprehensive analysis on the frequency domain divulges a lot of vulnerabilities in the GAN generated images. This makes it easier to separate these fake face images from real live faces. The project documents that with frequency analysis, simple linear models as well as complex models give high accuracy results. The models are trained on StyleGAN generated fake images, Flickr-Faces-HQ Dataset and Reface app generated video dataset. Logistic Regression turns out to be the best classifier with test accuracies of 99.67% and 97.96% on two different datasets. Future research can be conducted on different types of presentation attacks like using video, 3-D rendered face mask or advanced GAN generated deepfakes
    • …
    corecore