33 research outputs found

    Femtocell operator entry decision with spectrum bargaining and service competition

    Full text link
    This paper analyzes the effect of the entry of a femtocell operator into a mobile communications market where a macrocell operator exists. The analysis is conducted using a game-theory-based model, specifically a threelevel multi leaderfollower game, where different solution concepts are applied: Shapley value, Nash equilibrium and Wardrop equilibrium. It aims to answer the question of which benefit mobile communication users get from the entry of a femtocell operator into the market. The equilibrium is assessed from the point of view of each agent (e.g. profits and utilities), and of the whole (e.g. social welfare). A case for regulatory intervention is made. © 1997-2012 IEEE.This work has been supported by the Spanish Ministry of Economy and Competitiveness through project TIN2010-21378-C02-02.Guijarro Coloma, LA.; Pla, V.; Vidal Catalá, JR.; Martínez Bauset, J. (2012). Femtocell operator entry decision with spectrum bargaining and service competition. IEEE Communications Letters. 16(12):1976-1979. https://doi.org/10.1109/LCOMM.2012.101712.121645S19761979161

    Mobile Communications Industry Scenarios and Strategic Implications for Network Equipment Vendors

    Get PDF
    Mobiili-infrastruktuurimarkkinat ovat muuttuneet dramaattisesti viime vuosien aikana. Verkkolaitemarkkinat kokonaisuudessaan ovat pienentyneet operaattoreiden vähentäessä investointejaan. Tämä on edistänyt liiketoimintamallien muutosta tavanomaisista laajamittaisista laitetoimituksista kohti ohjelmisto- ja palvelukeskeisiä liiketoimintamalleja. Samanaikaisesti operaattorit modernisoivat verkkoinfrastruktuuriaan IP-pohjaiseksi kasvattaen IT-orientoituneiden toimittajien mahdollisuutta astua mobiiliinfrastruktuurimarkkinoille. Loppukättäjille tarkoitettujen sovellusten ja palveluiden alueella operaattorit kokevat internet-pohjaiset palvelut kasvavana uhkana tavanomaisten puhe- ja viestintäpalveluiden korvaajina. Tämän diplomityön tarkoituksena on valmentaa perinteisiä mobiili-infrastruktuuritoimittajia mahdollisten mobiili-liiketoimintaskenaarioiden ja niissä vallitsevien arvokonfiguraatioiden varalle. Ennen kuin mahdolliset tulevaisuuden skenaariot rakennetaan, mobiililiiketoimintaympäristön taustaa esitellään. Tässä yhteydessä olennaiset teknologiset ja liiketoiminnalliset näkökulmat tuodaan esille. Skenaariosuunnittelu aloitetaan tutkimalla ensin nykyisen liiketoimintaympäristön rakennetta mobiili-infrastruktuurimarkkinoilla. Tämän jälkeen PEST analyysiä hyödyntämällä kerätään joukko makro-tason voimia, joilla todetaan olevan vaikutus mobiili-liiketoiminnan tulevaisuuteen. Asiantuntijahaastatteluja hyödyntämällä kerättyjä voimia arvioidaan tärkeyden ja epävarmuuden perusteella. Tärkeimpien epävarmuuksien perusteella kehitetään neljä skenaariota kuvaamaan mahdollisia arvojärjestelmiä tärkeiden osapuolien keskuudessa. Lopuksi skenaariokuvauksia ja Michael Porterin teorioita hyödyntämällä tehdään strategisia johtopäätöksiä mobiili-infrastruktuuritoimittajien näkökulmasta. Kehitettyjen mobiili-liiketoimintaympäristöjen arvojärjestelmiä kuvaavien ääriskenaarioiden odotetaan avustavan liiketoiminnan osapuolia ottamaan vallitsevat epävarmuudet paremmin huomioon. Diplomityössä korostetaan välttämään implisiittisiä odotuksia tulevaisuudesta sekä varomaan mullistavien ja liiketoimintaympäristöä merkittävästi muuttavien muutosten aliarvioimista strategisen suunnitteluprosessin yhteydessä. Viisi kehitettyä strategista lähestymistapaa antavat ymmärtää, että mobiili-infrastruktuuritoimittajilla on useita toisistaan eriäviä mahdollisuuksia varautua liiketoimintaympäristön epävarmuuksiin ja kehitykseen. Kehitetyt skenaariot ja strategiset johtopäätökset voivat auttaa yrityksen johtohenkilökuntaa tekemään tietoisia päätöksiä, jotka pohjautuvat selkeästi esitettyihin näkemyksiin mahdollisista liiketoimintaympäristön tulevaisuuden etenemissuunnista.Mobile infrastructure markets have changed dramatically during the past years. Overall network equipment markets have declined gradually as operators have reduced capital investments. This has driven the shift from traditional large-scale, hardware-driven system roll-outs to software and services -driven business models. At the same time operators modernize their networks to IP-based solutions decreasing the barriers of IT and computeroriented vendors to enter the telecom-specific equipment markets. In applications and service domain internet service players are gradually taking over the traditional businesses of mobile operators by offering a variety of disruptive services accessible via a simple internet connection. The objective of the thesis is to prepare established telecom vendors for possible future mobile communications industry scenarios of different value configurations. Mobile communications industry background is introduced before possible future scenarios are constructed. Industry background chapter discusses relevant technological and economical aspects of today's mobile communications industry. The scenario construction process is initiated with a study of the current mobile infrastructure market structure. After that the most important forces shaping the markets are gathered using PEST analysis and assessed in terms of importance and uncertainty utilizing data from expert interviews. Based on key uncertainties four scenarios are constructed describing possible value systems between stakeholders involved in mobile industry. Finally, based on the scenarios strategic implications for established telecom vendors are discussed utilizing Michael Porter's framework of strategic approaches under industry uncertainty. The four boundary scenarios of mobile communications industry are intended to help the stakeholders involved to address the industry uncertainties in a new manner. It is emphasised that implicit forecasts about the future and the underestimation of radical or discontinuous changes should be avoided when conducting strategic planning in organizations. The formulated five strategic approaches imply that telecom vendors have several choices to prepare for possible futures of industry evolution. Constructed scenarios and strategic frameworks may assist managers to make informed decisions based on explicit views about the future and be aware of the set from which the selected approach or a set of approaches is chosen

    Competition in Service Provision between Slice Operators in 5G Networks

    Full text link
    [EN] Network slicing is gaining an increasing importance as an effective way to introduce flexibility in the management of resources in 5G networks. We envision a scenario where a set of network operators outsource their respective networks to one Infrastructure Provider (InP), and use network slicing mechanisms to request the resources as needed for service provision. The InP is then responsible for the network operation and maintenance, while the network operators become Virtual Network Operators (VNOs). We model a setting where two VNOs compete for the users in terms of quality of service, by strategically distributing its share of the aggregated cells capacity managed by the InP among its subscribers. The results show that the rate is allocated among the subscribers at each cell in a way that mimics the overall share that each VNO is entitled to, and that this allocation is the Nash equilibrium of the strategic slicing game between the VNOs. We conclude that network sharing and slicing provide an attractive flexibility in the allocation of resources without the need to enforce a policy through the InP.This work has been supported by the Spanish Ministry of Economy and Competitiveness through project TIN2013-47272-C2-1- R (cosupported by the European Social Fund) and by Institute ITACA-UPV through “Convocatorias Ayudas 2018-5”.Guijarro, L.; Vidal Catalá, JR.; Pla, V. (2018). Competition in Service Provision between Slice Operators in 5G Networks. Electronics. 7(11):1-10. https://doi.org/10.3390/electronics7110315S11071

    Dynamic Price Competition between a Macrocell Operator and a Small Cell Operator: A Differential Game Model

    Full text link
    [EN] An economic model was analyzed where a new supplier implements the technology of the small cells and positions itself as an incumbent service provider. This provider performs a dynamic reuse of resources to compete with the macrocells service provider. Themodel was analyzed using game theory as a two-stage game. In the first stage, the service providers play a Stackelberg differential game where the price is the control variable, the existing provider is the leader, and the new supplier is the follower. In the second stage, users' behavior ismodeled using an evolutionary game that allows predicting the population changeswith variable conditions. This paper contributes to the implementation of new technologies in the market of mobile communications through analysis of competition between the new small cell service providers (SSPs) and the existing service providers along with the users' behavior of mobile communications. The result shows that users get a better service, SSP profits are guaranteed, and SSP entry improves users' welfare and social welfare.This work was supported by the Spanish Ministry of Economy and Competitiveness through Project TIN2013-47272-C2-1R and cosupported by the European Social Fund BES-2014-068998.Romero-Chavarro, JC.; Sanchis-Cano, Á.; Guijarro, L. (2018). Dynamic Price Competition between a Macrocell Operator and a Small Cell Operator: A Differential Game Model. Wireless Communications and Mobile Computing (Online). 1-12. https://doi.org/10.1155/2018/1012041S11

    5G network slicing for rural connectivity: multi-tenancy in wireless networks

    Get PDF
    As the need for wireless broadband continues to grow around the world, there is an increasing focus to minimise the existing digital divide and ensuring that everyone receives high-quality internet services, especially the inhabitants of rural areas. As a result, different technological solutions are being studied and trialled for improving rural connectivity, such as 5G with dynamic spectrum access. One of the architectures of 5G is network slicing, which supports network virtualisation and consists of independent logical networks, called slices, on the 5G network. Network slicing supports the multi-tenancy of different operators on the same physical network, and this feature is known as neutral host networks (NHN). It allows multiple operators to co-exist on the same physical network but on different virtual networks to serve end users. Generally, the 5G NHN deployment is handled by an infrastructure provider (InP), who could be a mobile network operator (MNO), an Internet service provider, a third-party operator, etc. At the same time, potential tenants would lease slices from the InP. The NHN strategy would help reduce resource duplication and increase the utilisation of existing resources. The existing research into NHN for small cells, in-building connectivity solutions, and other deployment scenarios help to understand the technological and business requirements. End-to-end sharing across operators to provide services to their end users is another innovative application of 5G NHN that has been tested for dense areas. Meanwhile, the feasibility and policy impact of NHN is not studied extensively for the rural scenario. The research in this thesis examines the use of NHN in macro- and small-cell networks for 5G communication systems to minimise the digital divide, with a special focus on rural areas. The study also presents and analyses the 5G multi-tenancy system design for the rural wireless scenario, focusing mainly on exploring suitable business cases through network economics, techno-economic study, and game theory analysis. The results obtained from the study, such as cost analysis, business models, sensitivity analysis, and pricing strategies, help in formulating the policy on infrastructure sharing to improve rural connectivity. The contributions of the thesis are useful for stakeholders and policymakers to assess the suitability of the rural 5G NHN by exploring state-of-the-art technologies, techno-economic analysis, sensitivity analysis, newer business models, investment assessment, cost allocation, and risk sharing. Initially, the research gap is highlighted through the extensive literature review and stakeholders’ views on rural connectivity collected from discussions with them. First, the in-depth discussion on the network economics of the rural 5G NHN includes the study of potential future scenarios, value network configurations, spectrum access strategy models, and business models. Secondly, the techno-economic analysis studies the key performance indicators (KPI), cost analysis, return on investment, net present value, and sensitivity analysis, with the application for the rural parts of the UK and India. Finally, the game theory framework includes the study of strategic interaction among the two key stakeholders, InP and the MNO, using models such as investment games and pricing strategies during multi-tenancy. The research concludes by presenting the contribution towards the knowledge and future work.As the need for wireless broadband continues to grow around the world, there is an increasing focus to minimise the existing digital divide and ensuring that everyone receives high-quality internet services, especially the inhabitants of rural areas. As a result, different technological solutions are being studied and trialled for improving rural connectivity, such as 5G with dynamic spectrum access. One of the architectures of 5G is network slicing, which supports network virtualisation and consists of independent logical networks, called slices, on the 5G network. Network slicing supports the multi-tenancy of different operators on the same physical network, and this feature is known as neutral host networks (NHN). It allows multiple operators to co-exist on the same physical network but on different virtual networks to serve end users. Generally, the 5G NHN deployment is handled by an infrastructure provider (InP), who could be a mobile network operator (MNO), an Internet service provider, a third-party operator, etc. At the same time, potential tenants would lease slices from the InP. The NHN strategy would help reduce resource duplication and increase the utilisation of existing resources. The existing research into NHN for small cells, in-building connectivity solutions, and other deployment scenarios help to understand the technological and business requirements. End-to-end sharing across operators to provide services to their end users is another innovative application of 5G NHN that has been tested for dense areas. Meanwhile, the feasibility and policy impact of NHN is not studied extensively for the rural scenario. The research in this thesis examines the use of NHN in macro- and small-cell networks for 5G communication systems to minimise the digital divide, with a special focus on rural areas. The study also presents and analyses the 5G multi-tenancy system design for the rural wireless scenario, focusing mainly on exploring suitable business cases through network economics, techno-economic study, and game theory analysis. The results obtained from the study, such as cost analysis, business models, sensitivity analysis, and pricing strategies, help in formulating the policy on infrastructure sharing to improve rural connectivity. The contributions of the thesis are useful for stakeholders and policymakers to assess the suitability of the rural 5G NHN by exploring state-of-the-art technologies, techno-economic analysis, sensitivity analysis, newer business models, investment assessment, cost allocation, and risk sharing. Initially, the research gap is highlighted through the extensive literature review and stakeholders’ views on rural connectivity collected from discussions with them. First, the in-depth discussion on the network economics of the rural 5G NHN includes the study of potential future scenarios, value network configurations, spectrum access strategy models, and business models. Secondly, the techno-economic analysis studies the key performance indicators (KPI), cost analysis, return on investment, net present value, and sensitivity analysis, with the application for the rural parts of the UK and India. Finally, the game theory framework includes the study of strategic interaction among the two key stakeholders, InP and the MNO, using models such as investment games and pricing strategies during multi-tenancy. The research concludes by presenting the contribution towards the knowledge and future work

    Autonomous Component Carrier Selection for 4G Femtocells

    Get PDF
    corecore