746 research outputs found

    Magnetic Actuators and Suspension for Space Vibration Control

    Get PDF
    The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals

    A classification of techniques for the compensation of time delayed processes. Part 2: Structurally optimised controllers

    Get PDF
    Following on from Part 1, Part 2 of the paper considers the use of structurally optimised controllers to compensate time delayed processes

    Development and evaluation of methods for control and modelling of multiple-input multiple-output systems

    Get PDF
    In control, a common type of system is the multiple-input multiple-output (MIMO) system, where the same input may affect multiple outputs, or conversely, the same output is affected by multiple inputs. In this thesis two methods for controlling MIMO systems are examined, namely linear quadratic Gaussian (LQG) control and decentralized control, and some of the difficulties associated with them.One difficulty when implementing decentralized control is to decide which inputs should control which outputs, also called the input-output pairing problem. There are multiple ways to solve this problem, among them using gramian based measures, which include the Hankel interaction index array, the participation matrix and the Σ2 method.\ua0 These methods take into account system dynamics as opposed to many other methods which only consider the steady-state system. However, the gramian based methods have issues with input and output scaling. Generally, this is handled by scaling all inputs and outputs to have equal range. However, in this thesis it is demonstrated how this can cause an incorrect pairing. Furthermore, this thesis examines other methods of scaling the gramian based measures, using either row or column sums, or by utilizing the Sinkhorn-Knopp algorithm. It is shown that there are considerable benefits to be gained from the alternative scaling of the gramian based measures, especially when using the Sinkhorn-Knopp algorithm. The use of this method also has the advantage that the results are completely independent of the original scaling of the inputs and outputs.An expansion to the decentralized control structure is the sparse control, in which a decentralized controller is expanded to include feed-forward or MIMO blocks. In this thesis we explore how to best use the gramian based measures to find sparse control structures, and propose a method which demonstrates considerable improvement compared to existing methods of sparse control structure design.A prerequisite to implementing control configuration methods is an understanding of the processes in question. In this thesis we examine the pulp refining process and design both static and dynamic models for pulp and paper properties such as shives width, fiber length and tensile index, and various available inputs. We demonstrate that utilizing internal variables (primarily consistencies) estimated from temperature measurements yields improved results compared to using solely measured variables. The measurement data from the refiners is noisy, sometimes sparse and generally irregularly sampled. This thesis discusses the challenges posed by these constraints and how they can be resolved.\ua0\ua0 An alternative way to control a MIMO system is to implement an LQG controller, which yields a single control structure for the entire system using a state based controller. It has been proposed that LQG control can be an effective control scheme to be used on networked control systems with wireless channels. These channels have a tendency to be unreliable with packet delays and packet losses. This thesis examines how to implement an LQG controller over such unreliable communication channels, and derives the optimal controller minimizing the cost function expressed in actuated controls.When new methods of control system design and analysis are introduced in the control engineering field, it is important to compare the new results with existing methods. Often this requires application of the methods on examples, and for this purpose benchmark processes are introduced. However, in many areas of control engineering research the number of examples are relatively few, in particular when MIMO systems are considered. For a thorough assessment of a method, however, as large number of relevant models as possible should be used. As a remedy, a framework has been developed for generating linear MIMO models based on predefined system properties, such as model type, size, stability, time constants, delays etc. This MIMO generator, which is presented in this thesis, is demonstrated by using it to evaluate the previously described scaling methods for the gramian based pairing methods

    Multi-Objective Gust Load Alleviation Control Designs for an Aeroelastic Wind Tunnel Demonstration Wing

    Get PDF
    This paper presents several control and gust disturbance estimation techniques applied to a mathematical model of a physical flexible wing wind tunnel model used in ongoing tests at the University of Washington Aeronautical Laboratory's Kirsten Wind Tunnel. Three methods of gust disturbance estimation are presented, followed by three control methods: LQG, Basic Multi-Objective (BMO), and a novel Multi-Objective Prediction Correction (MOPC) controller. The latter of which augments a multi-objective controller, and attempts to correct for errors in the disturbance estimate. A simplified linear simulation of the three controllers is performed and a simple MIMO stability and robustness assessment is performed. Then, the same controllers are simulated in a higher fidelity Simulink environment that captures sampling, saturation and noise effects. This preliminary analysis indicates that the BMO controller provides the best performance and largest stability margins

    Automatic Flight Control Systems

    Get PDF
    The history of flight control is inseparably linked to the history of aviation itself. Since the early days, the concept of automatic flight control systems has evolved from mechanical control systems to highly advanced automatic fly-by-wire flight control systems which can be found nowadays in military jets and civil airliners. Even today, many research efforts are made for the further development of these flight control systems in various aspects. Recent new developments in this field focus on a wealth of different aspects. This book focuses on a selection of key research areas, such as inertial navigation, control of unmanned aircraft and helicopters, trajectory control of an unmanned space re-entry vehicle, aeroservoelastic control, adaptive flight control, and fault tolerant flight control. This book consists of two major sections. The first section focuses on a literature review and some recent theoretical developments in flight control systems. The second section discusses some concepts of adaptive and fault-tolerant flight control systems. Each technique discussed in this book is illustrated by a relevant example

    Realising full-scale control in wastewater treatment systems using in situ nutrient sensors

    Get PDF
    Abstract A major change in paradigm is taking place in the operation of wastewater treatment plants as automatic process control is becoming feasible. This change is due to a number of different reasons, not least the development of online nutrient sensors, which measure the key parameters in the biological nutrient removal processes, i.e. ammonium, nitrate and phosphate. The thesis is about realising full-scale control in wastewater treatment systems using in situ nutrient sensors. The main conclusion of the work is that it is possible to significantly improve the operational performance in full-scale plants by means of relatively simple control structures and controllers based on in situ nutrient sensors. The in situ location should be emphasised as this results in short dead time, hence making simple feedback loops based on proportional and integral actions effective means to control the processes. This conclusion has been reached based on full-scale experiments, where various controllers and control structures for the biological removal of nitrogen and the chemical removal of phosphorous have been tested. The full-scale experiments have shown that it is possible to provide significant savings in energy consumption and precipitation chemicals consumption, reduction in sludge production and improvement of the effluent water quality. The conclusions are supported by model simulations using the COST benchmark simulation platform. The simulations are used for investigating issues regarding the interactions between the main control handles working in the medium time frame (relative gain array analysis). The simulations have also been used for testing various control structures and controllers. Controllers for the following types of control are suggested and tested: „h Control of aeration to obtain a certain effluent ammonium concentration; „h Control of internal recirculation flow rate to obtain maximum inorganic nitrogen removal; „h Control of external carbon dosage together with internal recirculation flow rate to obtain a certain effluent total inorganic nitrogen concentration; „h Optimisation of the choice of sludge age. Additionally, a procedure for implementing new control structures based on nutrient sensor has been proposed. The procedure involves an initial analysis phase, a monitoring phase, an experimenting phase and an automatic process control phase. An international survey with the aim to investigate the correspondence between ICA (instrumentation, control and automation) utilisation and plant performance has been carried out. The survey also gives insight into the current state of ICA applications at wastewater treatment plants

    Multifunction tests of a frequency domain based flutter suppression system

    Get PDF
    The process is described of analysis, design, digital implementation, and subsonic testing of an active control flutter suppression system for a full span, free-to-roll wind tunnel model of an advanced fighter concept. The design technique uses a frequency domain representation of the plant and used optimization techniques to generate a robust multi input/multi output controller. During testing in a fixed-in-roll configuration, simultaneous suppression of both symmetric and antisymmetric flutter was successfully shown. For a free-to-roll configuration, symmetric flutter was suppressed to the limit of the tunnel test envelope. During aggressive rolling maneuvers above the open-loop flutter boundary, simultaneous flutter suppression and maneuver load control were demonstrated. Finally, the flutter damping controller was reoptimized overnight during the test using combined experimental and analytical frequency domain data, resulting in improved stability robustness

    Superheat control for air conditioning and refrigeration systems: Simulation and experiments

    Get PDF
    Ever since the invention of air conditioning and refrigeration in the late nineteenth century, there has been tremendous interest in increasing system efficiency to reduce the impact these systems have on global energy consumption. Efficiency improvements have been accomplished through component design, refrigerant design, and most recently control system design. The emergence of the electronic expansion valve and variable speed drives has made immense impacts on the ability to regulate system parameters, resulting in important strides towards efficiency improvement. This research presents tools and methodologies for model development and controller design for air conditioning and refrigeration systems. In this thesis, control-oriented nonlinear dynamic models are developed and validated with test data collected from a fully instrumented experimental system. These models enable the design of advanced control configurations which supplement the performance of the commonly used proportional-integral-derivative (PID) controller. Evaporator superheat is a key parameter considered in this research since precise control optimizes evaporator efficiency while protecting the system from component damage. The controllers developed in this thesis ultimately provide better transient and steady state performance which increases system efficiency through low superheat set point design. The developed controllers also address the classical performance versus robustness tradeoff through design which preserves transients while prolonging the lifetime of the electronic expansion valve. Another notable contribution of this thesis is the development of hardware-in-the-loop load emulation which provides a method to test component and software control loop performance. This method alleviates the costs associated with the current method of testing using environmental test chambers

    Performance-driven control of nano-motion systems

    Get PDF
    The performance of high-precision mechatronic systems is subject to ever increasing demands regarding speed and accuracy. To meet these demands, new actuator drivers, sensor signal processing and control algorithms have to be derived. The state-of-the-art scientific developments in these research directions can significantly improve the performance of high-precision systems. However, translation of the scientific developments to usable technology is often non-trivial. To improve the performance of high-precision systems and to bridge the gap between science and technology, a performance-driven control approach has been developed. First, the main performance limiting factor (PLF) is identified. Then, a model-based compensation method is developed for the identified PLF. Experimental validation shows the performance improvement and reveals the next PLF to which the same procedure is applied. The compensation method can relate to the actuator driver, the sensor system or the control algorithm. In this thesis, the focus is on nano-motion systems that are driven by piezo actuators and/or use encoder sensors. Nano-motion systems are defined as the class of systems that require velocities ranging from nanometers per second to millimeters per second with a (sub)nanometer resolution. The main PLFs of such systems are the actuator driver, hysteresis, stick-slip effects, repetitive disturbances, coupling between degrees-of-freedom (DOFs), geometric nonlinearities and quantization errors. The developed approach is applied to three illustrative experimental cases that exhibit the above mentioned PLFs. The cases include a nano-motion stage driven by a walking piezo actuator, a metrological AFM and an encoder system. The contributions of this thesis relate to modeling, actuation driver development, control synthesis and encoder sensor signal processing. In particular, dynamic models are derived of the bimorph piezo legs of the walking piezo actuator and of the nano-motion stage with the walking piezo actuator containing the switching actuation principle, stick-slip effects and contact dynamics. Subsequently, a model-based optimization is performed to obtain optimal drive waveforms for a constant stage velocity. Both the walking piezo actuator and the AFM case exhibit repetitive disturbances with a non-constant period-time, for which dedicated repetitive control methods are developed. Furthermore, control algorithms have been developed to cope with the present coupling between and hysteresis in the different axes of the AFM. Finally, sensor signal processing algorithms have been developed to cope with the quantization effects and encoder imperfections in optical incremental encoders. The application of the performance-driven control approach to the different cases shows that the different identified PLFs can be successfully modeled and compensated for. The experiments show that the performance-driven control approach can largely improve the performance of nano-motion systems with piezo actuators and/or encoder sensors

    Induction motor control: multivariable analysis and effective decentralized control of stator currents for high performance applications

    Get PDF
    Adequate control of the stator currents is a fundamental requirement for several high-performance induction motor (IM) control schemes. In this context, classical linear controllers remain widely employed due to their simplicity and success in industrial applications. However, the models and methods commonly used for control design lack valuable information –which is fundamental to guarantee robustness and high performance. Following this line, the design and existence of linear fixed controllers is examined using individual channel analysis and design. The studies here presented aim to establish guidelines for the design of simple (time-invariant, low order, stable, minimum-phase and decentralized), yet robust and highperformance linear controllers. Such characteristics ease the implementation task and are well suited for engineering applications, making the resulting controllers a good alternative for the stator currents control required for high-performance IM schemes; e.g., field oriented, passivity-based and intelligent control. Illustrative examples are presented to demonstrate the analysis and controller design of an IM, with results validated in a real-time experimental platform. It is shown that it is possible to completely decouple the stator currents subsystem without the use of additional decoupling elements
    • …
    corecore